شبیه سازی مدل سینتیک خشک شدن بستر نازک پرتقال رقم تامسون با استفاده از شبکه های عصبی مصنوعی | ||
| مجله علوم و صنایع غذایی ایران | ||
| Article 5, Volume 7, Issue 24, 1389, Pages 39-49 PDF (194.03 K) | ||
| Abstract | ||
| چکیده مرکبات به ویژه پرتقال جایگاه بسیار مهمی را در میان تولیدات کشاورزی در دنیا به خود اختصاص دادهاند. در این تحقیق خشک کردن بستر نازک پرتقال رقم تامسون بهوسیله شبکه عصبی مصنوعی مدلسازی شد؛ برای این منظور از خشک کن آزمایشگاهی استفاده گردید. توده بستر نازک ورقه های پرتقال با پنج دمای 40 ،50 ،60 ،70 و80 درجه سانتی گراد و سه سرعت هوای 5/0 ،1 و 2 متر بر ثانیه و سه ضخامت 2 ،4 و 6 میلی متر خشک شد. رطوبت اولیه پرتقال در طی آزمایش 4/5 تا 7/5 (g/g) بر پایه خشک بود. جرم توده بستر نازک در طی خشک کردن هر پنج ثانیه یک بار توسط ترازوی دیجیتال متصل به رایانه، اندازه گیری و ثبت گردید. از شبکه پس انتشار پیشخور با الگوریتمهای یادگیری مومنتوم و لونبرگ- مارکوارت برای آموزش الگوهای موجود استفاده شد. برای توسعه مدلهای شبکه عصبی مصنوعی بردار ورودی شامل دما، سرعت هوا و زمان خشکشدن و بردار خروجی محتوای رطوبتی پرتقال در نظر گرفته شد. نتایج نشان داد که شبکه پس انتشار پیشخور با توپولوژی 1-6-2 برای ضخامت 2 میلیمتری ورقه پرتقال، 1-7-2 برای ضخامت 4 میلیمتری ورقه پرتقال و 1-5-2 برای ضخامت 6 میلیمتری ورقه پرتقال و الگوریتم آموزش لونبرگ- مارکوارت و راهبرد توابع یکسان برای تمام لایهها (تانژانت سیگمویید) قادر است نسبت رطوبت را با ضرایب تعیین 99906/0، 99919/0 و 99930/0 و خطای متوسط مطلق 00013/0، 00012/0 و 00009/0 به ترتیب برای سه ضخامت 2 ،4 و 6 میلیمتری ورقههای پرتقال در شرایط مختلف خشککردن لایه نازک پیشبینی کند. | ||
| Keywords | ||
| شبکه های عصبی مصنوعی; کلید واژگان: پرتقال رقم تامسون; خشک کردن لایه نازک; الگوریتم مومنتوم; الگوریتم لونبرگ- مارکوارت | ||
|
Statistics Article View: 205 PDF Download: 151 |
||
| Number of Journals | 45 |
| Number of Issues | 2,171 |
| Number of Articles | 24,674 |
| Article View | 24,436,052 |
| PDF Download | 17,551,297 |