Search published articles


Showing 7 results for pirmoradi


Volume 8, Issue 4 (fall 2022)
Abstract

Backgrounds:  Although conventional therapies have played an essential role in the treatment of many diseases, emerging diseases require new treatment methods with less complications. Therefore, it is important to develop an effective vaccine for infections caused by the coronavirus to prevent mortality and create immunity the community.
Materials & Methods: In this research bioinformatics tools were used to design a vaccine against the  M membrane protein of SARS-CoV-2.  A total of 27 epitopes confined to B cells and MHC I and II alleles were structurally constructed in M protein for immune stimulation and antibody recognition which were used in the construction of a chimeric peptide vaccine .
Results: The vaccine was predicted to be a stable, antigenic, and non-allergenic compound. TRL5/vaccine complex  analysis  and docking simulation indicated a sufficiently stable binding with appropriated receptor activation. The immune response simulation following hypothetical immunization indicated the potential of this vaccine to stimulate the production of active and memory B cells, CD8 + T and, CD4 + T cells, and effective immunological responses induced by Th2 and Th1.
Conclusion:  The analysis of in-silico processes showed that the vaccine structure induced high antigenicity and good cellular immunity in the host body and stimulates various immune receptors such as TLR5, MHC I, and MHC II. Vaccine function was also associated with an increase in IgM and IgG antibodies and a set of Th1 and Th2 cytokines. But the final confirmation of the effectiveness of the designed vaccine requires  clinical processes.

Volume 12, Issue 3 (11-2023)
Abstract

 The European grapevine moth, Lobesia botrana (Denis and Schiffermueller) (Lepidoptera: Tortricidae), is a significant pest causing economic damage to vineyards worldwide. In this research, the cold tolerance of the pupae and its relationship with diapause was investigated at 23 ± 0.5 °C, 70 ± 5% RH, and LD 12:12 h. One-day-old eggs were transferred to LD 12:12 h to induce diapause at the pupal stage. Diapausing pupae exhibited a mean supercooling point (SCP) of -24.35 °C, whereas in the non-diapausing pupae (23 ± 0.5 °C, 70 ± 5% RH, LD 16:8 h), it was -23.06 °C, with no significant difference between the two groups. Furthermore, diapausing pupae demonstrated significantly higher cold tolerance (LT50 of -14.43 °C) than non-diapausing pupae (LT50 of -3.33 °C). Diapausing pupae tolerated subzero temperatures without significant changes in the SCP, tolerating 11 °C lower than control pupae due to the short daylength alone. Our results suggest that the diapause state and cold hardiness of L. botrana are independent of changes after SCP, and the insect employs a freeze-intolerant strategy to overcome subzero temperatures. Cold acclimation at -5 and -10 °C for 72 h induced a significant decrease in the SCP of diapausing pupae, while a 72-h cold acclimation had no notable impact on the SCP of non-diapausing pupae. These findings provide valuable insights into the survival mechanisms of the European grapevine moth under cold conditions and diapause-related adaptations.


 

Volume 17, Issue 1 (3-2017)
Abstract

In this paper, dynamic stability of a simply supported beam excited by a sequence of moving masses is investigated by preserving nonlinear terms in the analysis. This type of loading is important in problems such as motion of vehicles on bridges, high-speed transportation on rails, machining processes, conveying pipelines and barrel dynamics, so its investigation is important from practical viewpoint. The intermittent loading across the beam results in a periodic time-varying equation system. The effects of convective mass acceleration beside large deformation beam theory are both taken into account in the derivation of governing equations which is performed through adopting Hamilton's principle for mass-varying systems. In order to deal with the coupling between longitudinal and transversal deflections, the inextensibility assumption is implicitly introduced into the Hamiltonian formulation and an appropriate interpretation is presented to maintain this approximation reasonable. The method of multiple scales is implemented to find the domains of stability and instability of the problem in a parameter space. The results of applying the method forecast a qualitative change in beam behavior due to nonlinear terms. Results of different numerical simulations show the validity of the analytical approach obtained by the applied perturbation method.

Volume 17, Issue 9 (11-2017)
Abstract

In this paper, instability due to occurrence of parametric resonance in transverse vibration of a rectangular plate on an elastic foundation under passage of continuous series of moving masses is examined as a model of bridge-moving loads interaction. The extended Hamilton’s principle is employed to derive the partial differential equation of motion. Subsequently, the governing partial differential equation is transformed into a set of ordinary differential equations by the Galerkin procedure. Considering local, Coriolis and centripetal acceleration components of the moving masses in the analysis leads to appearance of time-varying mass, damping and stiffness matrices in the coefficients of the governing equation. The passage of continuous series of moving masses along the rectilinear path results in a parametrically excited system with periodic coefficients. Applying incremental harmonic balance method as a semi-analytical method to the governing equations, stability of the system is investigated for a wide range of masses and velocities of the passing loads and different boundary conditions of the plate. Moreover, effect of the foundation stiffness on stability of the plate is examined. Results indicate that using clamped supports for the edges of entrance and departure of masses over the plate’s surface leads to formation of an instability tongue in the parameters plane which does not appear for the case of using simply supports. Also, it is observed that critical velocities of the moving masses will be increased by escalation the foundation stiffness. Numerical simulations confirm the accuracy of the semi-analytical results.

Volume 18, Issue 111 (May 2021)
Abstract

Nutritional value, deliciousness and ease of digestion, high calories, suitable vitamins and minerals are some of the qualities that make pistachios superior to other kernels and are often consumed dry. Fresh pistachio does not have long shelf life despite its higher nutritional value, therefore, studying the methods of increasing the storage of fresh pistachios for the market is one of the aims of this product. In this regard, a study was carried out to investigate the effect of combined treatment of carboxymethyl cellulose (CMC) with different concentrations of two essential oils of clove and on the storage life of pistachio cultivar, Ahmad Aghaei. In this study, factorial experiments were conducted in a completely randomized design. In this experiment the treatments were in two levels, one concentration of control edible (distilled water), 0.5% CMC, 0.5% CMC +400 mg clove, 0.5% CMC +800 mg clove + 0.5 0% CMC +1200 mg clove and second factor of storage period were studied at two levels (25 and 50 days). The results showed that with increasing storage time, skin and kernal firmness decreased in all treatments. The percentages of weight loss, chroma index, malondialdehyde, hydrogen peroxide increased during storage. The application of carboxymethyl cellulose alone and with the essential oils of cloves compared to the distilled water application improved most of the factors studied. The combined treatments were able to maintain fruit firmness compared control sample and were unable to maintain the amount of phenolic compounds, total chlorophyll of kernal, and kernal carotenoids during storage. Overall, the combination of carboxymethyl cellulose with 400 mg / L of clove essential oil were able to retain most of Ahmadaghaiechr('39')s pistachio quantitative and qualitative characteristics for up to 50 days.


Volume 19, Issue 9 (September 2019)
Abstract

In this paper, the dynamic stability of a moderately thick rectangular plate carrying an orbiting mass and lying on a visco-elastic foundation is studied. Considering all inertial terms of the moving mass and using plate first-order shear deformation theory, the governing equations on the dynamic behavior of the system are derived. The Galerkin’s method on the basis of trigonometric shape functions is applied to change the coupled governing partial differential equations to a system of ordinary differential equations. Due to the alternative motion of the mass along the circular path over the plate’s surface, the governing equations are the equations with the periodic constant. Applying the semi-analytical incremental harmonic balance method, the influences of the relative thickness of the plate, radius of the motion path, and stiffness and damping of the visco-elastic foundation on the instability conditions of the system are investigated. A good agreement can be observed by comparing the predicted results of the incremental harmonic balance method with the numerical solution results. Based on the findings, increasing the radius of the motion path broadens the instability regions. Moreover, increasing the stiffness and damping of the foundation cause the system more stable.


Volume 24, Issue 2 (3-2022)
Abstract

The aim of this study was to determine the authenticity of honey by processing microscopic images and obtaining an algorithm for classifying various honey frauds. In this study, sucrose, fructose, and fructose-glucose solution at a ratio of 0.9 were used to make honey adulteration. The level of adulterated honey was based on the weight percentages of 2.5, 5, 7.5, 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 by stirring. Different samples were imaged under a microscope. Each image was processed in 33 monochrome color spaces and 15 parameters were extracted from it. The three main and effective parameters of various color spaces were selected using sensitivity analysis for modeling honey fraud by adaptive Fuzzy Neural Inference System (ANFIS), Artificial Neural Network (ANN), and response surface methodology. Various criteria were used to evaluate the performance of the models such as coefficient of determination, mean square error, sum of squared estimate of errors, and mean absolute errors. The results showed that the determination coefficient and the mean square error of the artificial neural network model was 0.974 and 0.0024, respectively. Finally, using the desirability function, the artificial neural network model was selected as the best model due to less prediction error values and desirability of 0.948.

Page 1 from 1