Search published articles


Showing 3 results for baghlani


Volume 15, Issue 78 (8-2018)
Abstract

In this study, the effect of carboxylmethyl cellulose edible coating containing summer savory (Satureja hortensis) extract on the quality of Lethrinus nebulosus fillets during chilled storage was evaluated. Summer savory extract was extracted using ethanol 80% and its chemical compositions was analyzed using GC/MS system that totally 22 compounds were detected for summer savory extract and carvacrol was the main compound (28.67%) of extract according to GC/MS analysis. The fish fillets were divided into five groups: the control, CMC and CMC coating containing 0.5, 1 and 1.5% of summer savory extract and stored at 4±2°C for 9 days. During storage period, the analysis of biochemical (pH, TVB-N, TBA and FFA), microbial (total viable count and psychrotrophic count) and sensory evaluation (texture, odor, color and overall acceptance) for all samples were showed significantly changes (p<0.05). At the end of storage period, the sample treated with 1.5% of extract significantly had the lowest values of TBA, FFA and microbial growth compared to the control (p<0.05). Also, coated samples had the lower values of pH (p<0.05) and TVB-N than the control sample at the end of storage period. As regards to sensory evaluation, the coated samples had a longer shelf life (3 days) than the control sample, and the sensory properties of samples treated with extracts of 1 and 1.5%, significantly improved compared to the control on day 9 (p<0.05). Therefore, CMC coating enriched with summer savory extract represents a promising method for maintaining the quality of L. nebulosus fillets during chilled storage.

Volume 20, Issue 5 (11-2020)
Abstract

The load type imposed on the structures is one of the important issues of the modal identification Experimental methods. Generally the loads applied to a structure for dynamic testing are divided into two categories: artificial stimulation and ambient loads. Applying artificial loads to large structures such as bridges and tall buildings is difficult, costly and in some cases impossible. For this reason, modal identification of such structures is generally done by ambient vibration tests. However this experimental methods, also include problems such as large noise amplitude relative to the measured responses that this causes errors in the results and in some cases leads to unrealistic modes. As a solution, modal information can be calculated from several different methods and compared with each other to ensure the accuracy of the results. In this paper, a new scheme for natural frequencies extraction of structures from their ambient vibration is presented. For this purpose, the combination of two mathematical techniques of random decrement (RD) and proper orthogonal decomposition (POD) methods were used. The reason for using these two methods, is their ability to reduce the noise effects. In other words, combining of these two methods can lead to a very powerful tool for extracting structural frequencies from its ambient vibration under high amplitude noise conditions. The proposed algorithm consists of three steps: In the first step, after measuring the acceleration response of the structure at the appropriate points, the effects of random vibration are eliminated from the response by RD method and only dynamic properties of the structure remain in the acceleration records. Secondly, the acceleration records are separated into several structural modes using the proper orthogonal decomposition technique and finally, at the last step, the proceeded responses are transformed by the fast Fourier transform into the frequency domain to extract the natural frequencies of the structure. The strength of the proposed method is its robustness to the use of very high amplitude noise data, which is one of the challenges in the ambient vibration experiments. The accuracy of the proposed algorithm was evaluated by numerical modeling and experimental study. To investigate the efficiency of the new method, the numerical and experimental results were compared with the frequencies obtained from commonly modal identification methods such as extended frequency domain decomposition (EFDD) and stochastic subspace identification (SSI). A very good agreement was observed between the results of methods. Furthermore, Studying the effect of noise on the new algorithm results shows that increasing the ratio of noise to acceleration amplitude up to 250, did not affect the results precision and the main frequencies of the structure can be obtained with good accuracy. In this study, the effect of the number of sensors used in the ambient vibration test also was investigated on the accuracy of the new algorithm results. It was concluded that the minimum number of sensors (even one number) and repetition of the experiment can be used to extract structural frequencies from its ambient vibration with high accuracy. The results of this study showed that the new method can be used as a suitable tool to determine the natural frequencies of structures from its ambient vibration under severe noise conditions and to control the results obtained from other methods.


Volume 24, Issue 4 (10-2024)
Abstract

Structures, including concrete bridges, may be exposed to gradual damage during operation due to environmental conditions such as corrosion, which will reduce their useful life. Knowing the amount of remaining useful life of the structures makes it possible to improve, strengthen or rebuild them at the right time. To determine the remaining useful life of a structure, there are three common methods under the titles of data-driven method, failure physics method and combined method. In this article, the combined method of determining the remaining useful life of structures has been studied. The purpose of this research is to propose a suitable method for predicting the remaining useful life of a bridge structure with a reinforced concrete deck under chloride ion corrosion using a Bayesian network. The remaining useful life of reinforced concrete parts under chloride attack includes two parts of the time related to the initial stage of corrosion and the time related to the release of chlorine ions. To determine the remaining useful life part related to the initial stage, various researches have been done and the American ACI365 committee has proposed a software called Life-365 for this purpose. There is no comprehensive research to determine the second part of the remaining life, which is related to the release stage. Based on the prepared Bayesian network and the formula obtained in this research, the remaining life of the chloride diffusion stage in concrete was estimated to be 9.116 years in the best conditions and 2.73 years in the worst conditions. Meanwhile, the number suggested by the ACI365 committee, in practical work, is usually equal to 6 years for the release stage.  This issue clarifies the need for more research in this regard. In this article, using the data available in past researches and reproducing the data and using the Bayesian network, relationships are presented to determine the useful life of the bridge structure in both the initial and release stages.Based on the proposed method, using the Bayesian network, relationships can be obtained for each of the two parts of the remaining useful life of the structure under chloride corrosion, i.e., the corrosion initiation stage and the chloride release stage, in terms of factors affecting the remaining useful life in a specific project. . In these networks, the effect of various factors can be considered, which is one of the advantages of the proposed method.The remaining useful life has an inverse relationship with temperature. When the average temperature increases by 20 degrees, the remaining useful life decreases by an average of 30%.With the help of the proposed relationships, a parametric study was conducted to investigate the effect of different conditions of using pozzolanic compounds on the remaining life of the structure. In this regard, 17 states of different pozzolanic compounds with different concentrations were considered and the average remaining useful life due to different states was calculated. The average life obtained compared to the case where no pozzolan is used in concrete showed a 38% increase in life. In order to evaluate the results of the proposed relationships, the problem of determining the remaining useful life for a numerical model of a concrete bridge and several marine structures located in the Persian Gulf was investigated. The results of this research show that by using the proposed relationships, it is possible to improve the accuracy of estimating the remaining useful life of bridges with concrete decks exposed to chloride ion penetration, relying on the data obtained from the field inspections of the structure.

Page 1 from 1