Search published articles
Showing 2 results for Vaziri Yazdi
Volume 2, Issue 1 (Spring 2018)
Abstract
Aim: Most scientists are trying to treat cancer, and in this regard were produced numerous anticancer drugs, that adverse effects on non-target tissue. To overcome this, drugs freight to magnetic nanoparticles Chitosan and its carboxymethyl secondary coumpands are biopolymers that are non-toxic, biodegradable therefore found applications in biomedical field. We explain here that glycerol monooleate covered magnetic nanoparticles (GMO-MNPs) capable of transporting hydrophobic anticancer drugs. Method: In the present study, we have expanded 5-fluorouracil (5-FU) that loaded on chitosan MNPs for targeted cancer therapy. Results: The modified nano-adsorbent was then characterized by Fourier Infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), elemental analysis of CHN (9) and thermal weighing analysis (TGA). Lab conditions such as pH, contact time were optimized. To analyze the structure of the sample, X-ray diffraction spectroscopy was used to investigate the magnetic properties of the nanosized particles synthesized by the magnetometer and to detect the phase type formed on the monolayer glycerol matrix network using a polarizing light microscope. Also, the study showed essential oil release in the external environment of 90% for 30 hours. Conclusion: The optimized magnetic nanoparticles according to SEM image, exhibited segregated nanoparticles with sub-spherical smooth morphology and also the high thermal stability of 5-Fluorouracil nanoparticles which indicated a well-established structure of nanoparticles.
Volume 16, Issue 88 (6-2019)
Abstract
Nowadays the use of natural and biodegradable nanofibers in the packaging industry due to the contamination of non-biodegradable polymers in food packaging is dramatically obvious and electrospinning is one of the easiest ways to produce these nanofibers. In this study, the electrospinning of collagen polymer type I (extracted from the rat-tail) with Beta Cyclodextrin and Nanoclay was investigated and Acetic acid was used as a safe solvent in terms of the environment. After designing the experiments using an experimental design software (Design Expert 7.0), the effects of independent variables such as weight-weight ratio of Beta Cyclodextrin to Collagen (X1), Volume-weight ratio of Nanoclay to Collagen (X2) and solution feed rate (X3) was evaluated on dependent variable, including nanofibers diameter (Y1). Also, electrospinning process was performed with a voltage of 12 Kv and the distance between the needle and the collector 120 mm at ambient temperature and pressure. Nanoclay have been used due to barrier and antimicrobial properties; in addition, Beta cyclodextrin was used for the specificity of the structure that causes hydrophilic and hydrophobic surfaces. Furthermore, to investigate the shape of nanofibers Scanning Electron Microscopy, to investigate the structure Transform Infrared Spectroscopy, to investigate existing elements X-Ray Fluorescence Spectroscopy and to determine thermal resistance Differential scanning calorimetry was applied. The results showed that optimal nanofiber with a average size of 123.01 nm and a flawless structure with a viscosity of 145.33 mpa.s was obtained.