Search published articles


Showing 3 results for Saei moghaddam


Volume 2, Issue 4 (Winter 97 2019)
Abstract

Dehydrogenation of alkane to alkene is a key process in petrochemical industry. Propylene has intermediate role to production many industrial polymers. In this research applying oxidative dehydrogenation method for propylene production and CO2 used as oxidant. By use of XRD, Raman, TEM, BET and EDX techniques the results have been analyzed. In XRD and Raman tests anatase phase and Titania nanotubes have been distinguished. TEM confirmed TiNTs with pure structure. Vanadium catalyst with 5% of vanadia synthesized by impregnation method. Adding silicon in support increased thermal stability of catalyst. Raman and XRD method confirmed good distribution of active phase on supports. VSiTi catalyst have 28.31% conversion and 51% selectivity in 550 oC. Improvement in yield of propylene production would be in result of higher surface area and good distribution of vanadia over modified Titania nanotubes.  

Volume 4, Issue 2 (Summer 2020)
Abstract

Research subject: Regarding to temperature effect on the rate of corrosion in absorption tower of gas refineries, it is very useful to examine and invest on new methods to decrease the temperature in mentioned towers.
Research approach: By studying different types of corrosion in amine processes and the influence of different variables on them, the dominant effect of temperature on the rate of corrosion in absorption towers was determined. Due to decreasing temperature in the absorption tower the surface tension of amine solvent and corrosion rate decrease. The reduction in surface tension reduces the foaming and flooding in the tower, which reduces the concentration of sour gases CO2 and H2S from the natural gas outlet. Various methods of reducing temperature in the absorption tower such as increasing flow rate of circulation amine solvent, opening the insulated tower wall and injecting amines into the middle of the tower have been studied. Aspen- HYSYS software was used to investigate the effects of amine injection into the middle of the tower.
Main result: According to the simulation results, the maximum temperature in the two-feed absorption tower was reduced to about 3°C and in the three feedstocks the maximum temperature was reduced to about 10°C. Also, as the CO2 and H2S concentration of the gas outlet decreases, the amount of Spent Caustic and catalyst in the lower part of the tower will decrease. Finally, it was found that among the above methods, injection of amine into the middle of the tower had the highest efficiency in decreasing the temperature of it. However, a combination of the above methods can be used to further reduce the temperature in the tower.
 

Volume 4, Issue 4 (Winter 2021)
Abstract

Research subject: One of the major problems we face with the growth of various industries around the world is the environmental pollution of heavy metals. One of the most toxic heavy metals that is problematic even at low concentrations is Cr (IV).
Research approach: In this study, the removal of this toxic heavy metal was investigated with high efficiency by UIO-66-MnFe2O4-TiO2 magnetic adsorbent. For this purpose, magnetic nanocomposite (UIO-66-MnFe2O4-TiO2) was synthesized based on metal-organic framework (MOF) for adsorption of Cr (IV). The choice of the hydrothermal method for the synthesis of UIO-66 in addition to its simplicity resulted in the production of pure and efficient UIO-66, which produced very high efficiency during the experiments. MnFe2O4 nanoparticles were used to magnetize the adsorbent. To increase the magnetic properties and increase the loading efficiency of the MnFe2O4 nanoparticles, TiO2 nanoparticles were used to increase the loading rate on the adsorbent. XRD, SEM, FT-IR, BET, VSM and EDX tests were used to the characterization of the adsorbent properties.
Main results: Effect of four effective variables during adsorption experiments such as adsorbent content (0.05 to 0.25 g), pH (2 to 6), adsorption time (15 to 75 min), initial metal ion concentration (200 to 1000 mg / l) at five levels (+2 to +2) were investigated using experimental design with response surface methodology (RSM) and central composite design (CCD). The best conditions were determined for the independent variables for the initial metal concentration of 552 mg /l. The optimum pH was obtained 4 during the experiment. Finally, the optimum values were achieved for adsorption parameters such as adsorption time and adsorbent amount were 42.3 min and 0.143 gr, respectively, and also the maximum adsorption rate was obtained 98%. Investigation of the adsorption isotherm kinetics showed that the pseudo-second-order model and Langmuir isotherm fit the Cr (IV) data well. After the adsorption process, the adsorbent can be removed from the environment by a magnetic field.

 

Page 1 from 1