In this research, with the help of the gene expression programming (GEP) technique, a formula was developed to estimate the ultimate load-carrying capacity of CFST columns after exposure to elevated temperatures. To that end, the experimental data of 94 groups of CFST stub columns were employed, of which 80% were used to train the model and the remaining 20% to validate the model. Input variables included the compressive strength of the concrete core (

), cross-sectional area of the concrete core (

), yielding stress of steel (

), cross-sectional area of steel tube (

), normalized temperature (

), and the confinement index (

). The validity of the developed model was assessed using a portion of the data that had not been employed in the training phase. To ensure the correct prediction of the ultimate load-carrying capacity of CFST stub columns by the developed model, a sensitivity analysis and parametric studies were conducted on the model and revealed the complete compatibility of the model with physical facts. The results of this research indicate that increasing the compressive strength of the concrete core, cross-sectional area of the steel tube, yield stress of steel tube, cross-sectional area of the concrete core and the confinement index increases the ultimate load-carrying capacity of the CFST section, while increasing the exposure temperature lowers this parameter.