Search published articles


Showing 3 results for Karkhane


Volume 11, Issue 3 (Summer 2020)
Abstract

Hyper-glycosylation is an approach to introduce new N-glycosylation consensus sequence(s) (َAsn-Xxx-Ser/Thr three-peptide) into a protein primary amino acid sequences by site-directed mutagenesis which is followed by the attachment of a new glycan to the Asn residue located within the three-peptide sequence. Hyper-glycosylation has attracted lots of interest especially in the protein therapeutics industry. The attached glycan may improve the pharmacokinetic properties of the hyper-glycosylated priteins and increase their half-life in the bloodstream. In the current study, a new N-glycosylation site was introduced into N-terminal Gla domain of hFIX. Arg37 position of mature hFIX was targeted to be converted into Asn residue by site-directed mutagenesis using overlap extension PCR. Recombinant expression plasmids for native and mutant hFIX were constructed. The expression of the recombinant wild-type and mutant hFIX was analyzed in mammalian HEK293 cells using gradient SDS-PAGE and western blotting analysis. The results indicated in higher molecular weight for R37N mutant in compared with the native protein. The glycan attachment to R37N mutant was further confirmed by PNGase digestion and western blotting. 

Volume 11, Issue 4 (1-2012)
Abstract

This paper addresses adaptive observer design problem for joint estimation of the states and unknown parameters for a class of nonlinear systems which satisfying one-sided Lipschitz and quadratic inner bounded conditions. It’s shown that the stability of the proposed observer is related to finding solutions to a quadratic inequality consists of state and parameter errors. A coordinate transformation is used to reformulate this inequality as a linear matrix inequality (LMI). Sufficient conditions that ensure the existence of adaptive observer are expressed in forms of LMIs, which are easily tractable via standard software algorithms. If the proposed conditions are satisfied, then the state estimation errors are guaranteed to converge to zero asymptotically while, the convergence of the parameters is guaranteed when a persistence of excitation condition is held. The effectiveness of the proposed method is shown by simulation for the joint estimation of states and parameters of a numerical system.

Volume 22, Issue 2 (Spring 2019)
Abstract

Functional disorder in different tissues is a consequence of cell damage in a part of a tissue that can occur because of diseases, traumas, or accidents. Organ transplantation has so far been the only treatment approach for these damages; however, transplantation therapies have been greatly limited by the serious shortage of donors or immune rejection. One of the alternative approaches is tissue engineering that recently has attracted the tremendous attentions of many researchers. Cell sheet engineering is a technology that can construct bioengineered sheet-like tissues without the need of using scaffolds and it is called “scaffold-free tissue engineering”. Cells are cultured at 37℃ on the surfaces grafted with the temperature responsive polymer “poly (N-isopropylacrylamide)”. Then, the cell sheet is harvested with a simple reduced-temperature treatment up to 20℃ and transplanted directly onto the injured surface without sutures or glues. In the present article, researches and experiments in the field of cell sheet engineering have been paid attention. Moreover, the advantages and challenges of this method have been discussed.


Page 1 from 1