Search published articles


Showing 3 results for Ghaffari Khaligh


Volume 18, Issue 116 (October 2021)
Abstract

In this study, the effect of the free extract, nanoliposome, and nanoniosome containing myrtle extract and sodium benzoate as a preservative on microbial, sensory, and chemical properties of mayonnaise during 90 days at 4 °C was investigated at 15 days intervals. The results of chemical tests showed that mayonnaise samples containing nanoliposome and nanoniosome significantly (p < 0.05) reduced peroxide, thiobarbituric acid compared to the control samples. There was a significant difference between the pH of the sauce samples prepared on the first day so that the highest pH (4.2) was related to the sauce sample containing sodium benzoate. The acidity values of all samples were in the standard range (0.62 to 1.4). Microbial results showed that the counts of Escherichia coli and heterofermentative lactobacilli were negative for all treatments and following the standard. During the storage time, the microbial growth of the sauce containing the natural preservative, nanoliposome, and nanoniosome, was effective in controlling mold and yeast and acid-resistant bacteria compared to the control sample (p <0.05). The results of sensory evaluation in this study showed that mayonnaise samples were significantly different in sensory properties during storage time so that the sauce containing free extract had a lower color score. Also, the lowest brightness index (L* = 74.31 ± 1.03) was related to the sauce containing the free extract. Sauce samples containing nanoniosome and nanoliposome had the highest acceptable spreadable property. The results of this study showed that using nanoniosome and nanoliposome containing the myrtle extract can reduce the use of the chemical additive sodium benzoate and this is a step in improving the health of the consumer community.

Volume 20, Issue 136 (June 2023)
Abstract

The stability of curcumin and its encapsulation efficiency in emulsion are among the most important factors determining its bioavailability and absorption in the body. For this purpose, parameters affecting these two factors, including time, pH, and cellulose concentration, were used as input variables in the present study. Curcumin stability and encapsulation efficiency were used as response variables in artificial neural networks and decision tree algorithms. In this regard, cellulose nanocrystal obtained from acid hydrolysis was used to prepare curcumin Pickering emulsion with oil:water ratio of 5:95 and cellulose concentration 1, 1.5, 2, 2.5, and 3% (w/v) and the encapsulation efficiency and stability of curcumin were measured during 8 days. The results showed that the encapsulation efficiency significantly increased as cellulose concentration increased. Encapsulation efficiency at pH 7 was higher than at pH 2 (p≤0.05). The curcumin content in the emulsions prepared at pH 2 drastically decreased during storage, while it was less degraded in emulsions at pH 7 after 8 days of storage. The modelling results for curcumin stability and encapsulation efficiency based on R2 and RMSE% statistics showed that MLP 3-6-1 (R2=0.99; RMSE%=10.00) and RBF 2-6-1 (R2=0.99; RMSE %=9.99) were had more accuracy than other models. Finally, the results showed that the artificial neural network algorithm performed better than the decision tree in predicting cellulose Pickering emulsions' encapsulation efficiency and curcumin stability.

Volume 20, Issue 142 (December 2023)
Abstract

One of the critical methods to maintain the stability and functional properties of plant essential oils as a useful source of bioactive compounds against environmental damage is their encapsulation in nanocarrier systems such as nanoliposomes. In this study, nanoliposome containing the citron peel essential oils were prepared without the use of toxic organic solvent and by employing health-giving compounds such as sesame oil in addition to lecithin for the first time in the formulation. The stability of the samples during 30 days of storage at temperatures of 4ºC and -18ºC was determined by investigating the retention amount of phenolic compounds, pH changes, antioxidant and antimicrobial performance. The nanoliposomal samples of essential oils of hydrodistillation and supercritical CO2 of citron peel prepared with different concentrations of lecithin oil had different quantities of pH and phenol retention percentage, and their amount reduced with increasing storage time at both test temperatures. DPPH inhibitory ability and antimicrobial activity of both citron peel essential oils were improved after encapsulation in nanoliposome. But their amount in both storage temperatures decreased with the advancing of time. The nanoliposome of the supercritical fluid essential oil of citron peel respectively with the formulation containing the highest and lowest amount of lecithin oil at the storage temperature of 4ºC showed the best result in this study. Therefore, the citron peel essential oil with encapsulation in the nanoliposome system prepared from lecithin-sesame oil, due to improvement of antioxidant and antimicrobial activity and its higher stability against storage temperature, can be used as an effective natural functional additive in the food industry.


 

Page 1 from 1