جستجو در مقالات منتشر شده


۱ نتیجه برای خان رمکی


دوره ۱۷، شماره ۱۰۹ - ( اسفند ۱۳۹۹ )
چکیده

آفات و بیماری های گیاهی یک تهدید عمده برای امنیت غذایی بشر بشمار می­آیند. در مزارع وسیع، تشخیص دقیق و به هنگام توسط انسان به دلیل زمان بر بودن و احتمال تشخیص اشتباه امکان پذیر نمی باشد. از اینرو برای تشخیص فوری، اتوماتیک ، مناسب و دقیق آفات  کشاورزی،  استفاده از پردازش تصویر و هوش مصنوعی از جمله یادگیری عمیق  می­تواند بسیار مفید باشد. در این تحقیق، مدل‌های شبکه عصبی پیچشی برای تشخیص و شناسایی سه نوع آفت مرکبات متداول در شمال ایران نظیر پروانه مینوز، فوماژین (قارچ دوده مرکبات) و بالشتک با استفاده از تصاویر برگ‌های آلوده، از طریق روش‌های یادگیری عمیق توسعه داده شده است. برای این منظورمعماری‌های رزنت‌۵۰ و وی‌جی‌جی‌۱۶ به عنوان شبکه عصبی پیچشی معروف با استفاده از روش انتقال یادگیری بر روی ۱۷۷۴ تصویر برگ آلوده مرکبات که در شرایط طبیعی و مزرعه‌ای فراهم گردید، آموزش داده شد. در مرحله آموزش، از روش افزونه‌سازی داده‌ها برای افزایش تعداد نمونه‌های آموزشی و بهبود تعمیم‌پذیری طبقه‌بند‌ها استفاده گردید. برای تجزیه و تحلیل تجربی از اعتبارسنجی ضربدری به منظور اندازه‌گیری دقت شبکه عصبی پیچشی استفاده شد. در این استراتژی، همه تصاویر بدون هیچگونه همپوشانی مجموعه داده‌های آموزش و امتحان، آزمایش شدند. بر اساس نتایج به دست آمده دقت مدل‌های  رزنت‌۵۰ و وی‌جی‌جی‌۱۶ به ترتیب ۰۵/۹۶ و ۳۴/۸۹ درصد ارزیابی گردید.از اینرو مدل رزنت‌۵۰، می تواند روش فوق را به یک سیستم مشاوره یا هشداردهنده اولیه بسیار مناسب تبدیل کند.

صفحه ۱ از ۱