جستجو در مقالات منتشر شده


۱ نتیجه برای بهنام پور


دوره ۲۱، شماره ۱۵۱ - ( شهریور ۱۴۰۳ )
چکیده

با تغییر در شدت عملیات مکانیکی-حرارتی متفاوت، تنوع فرمولاسیون و شرایط نگهداری، ۳۶ نمونه پنیر موزارلا کم­چرب تهیه و سختی چسبندگی، انسجام، فنریت، حالت صمغی و قابلیت جویدن آنها توسط تجزیه و تحلیل مشخصات بافت اندازه­گیری و با استفاده از تجزیه و تحلیل تک­متغیره در قالب فاکتوریل در نرم­افزار SPSS با یکدیگر مقایسه شد. سپس تصویربرداری از همان نمونه­ها با دوربین فراطیفی در محدوده ۱۰۰۰-۴۰۰ نانومتر با دوربین فراطیفی انجام و پس از پیش­پردازش طیف­ها و جداسازی طول موج­های مؤثر به کمک الگوریتم­های انتخاب ویژگی، مدلسازی با الگوریتم رگرسیون خطی چندگانه، رگرسیون حداقل مربعات جزئی، ماشین بردار پشتیبان با کرنل خطی، شبکه عصبی پرسپترون چندلایه، جنگل­های تصادفی و الگوریتم رأی اکثریت در نرم­افزار پایتون انجام و کارائی مدل­های ارزیابی گردید. نتایج نشان داد که با تشدید عملیات مکانیکی-حرارتی، سختی، فنریت، حالت صمغی و قابلیت جویدن و انسجام افزایش و چسبندگی کاهش پیدا کرد (۰۵/۰< P). افزودن اسید و جانشین­شونده­های چربی سبب کاهش سختی، انسجام، فنریت و قابلیت جویدن شده و حالت صمغی و چسبندگی را افزایش دادند. الگوریتم رأی اکثریت، بیشترین کارایی را در پیش­بینی سختی (۸۷۸/۰=R۲p، ۵۲/۲۶۰۶= RMSEp و ۱۲/۲=RPD) بروز داد و توانست انسجام موزارلا را با کارائی بالاتری نسبت به سایر الگوریتم­ها پیش­بینی نماید. رگرسیون خطی چندگانه در پیش­بینی چسبندگی کارائی نداشت، اما روش جنگل­های تصادفی با عملکرد بالا این ویژگی را پیش­بینی نمود (۸۰۸/۰=R۲p، ۴۹/۵۶= RMSEp، ۹۰/۱=RPD). شبکه عصبی پرسپترون چندلایه با کمترین خطا، توانست فنریت (۸۴۸/۰= R۲p ۰۹۴/۰= RMSEp، ۱۲/۲=RPD) و قابلیت جویدن (۸۴/۰=R۲p، ۲۱/۱۱۱۷= RMSEp، ۹۶/۱=RPD) موزارلا را با عملکرد مناسب پیش­بینی نماید. تمام روش­ها به جز جنگل­های تصادفی توانستند با کارائی بالا حالت صمغی را پیش­بینی کنند. در این مطالعه مشخص شد عوامل فرایند تأثیر معنی­داری بر ویژگی­های بافتی داشتند و روش تصویربرداری تصویربرداری فراطیفی یک روش جایگزین مناسب برای تخمین ویژگی­های بافتی پنیر موزارلا تشخیص داده شد.
 

صفحه ۱ از ۱