Search published articles
Showing 2 results for الهوردی
H. Hashemzadeh, A. Allahverdi , P. Ertl, H. Naderi-Manesh,
Volume 10, Issue 4 (Fall 2019)
Abstract
In view of the constant increase of nanotechnology and nanomaterials applications in our daily life, to determine whether they are safe, “in vitro” and “in vivo” screening methods are needed. Obviously, application of models that are similar to the physiological tissues process of the human body could be a better candidate. The three-dimensional spheroid method, spheroid were generated using commercial microplates, has many benefits (in comparison with traditional methods or monolayer cell culture) such as the growth of the cells in 3D, similar to the body's physiological tissue, an alternative for animal models, cell-to-cell interactions, and better cell signaling. In this study, the toxicity of silver nanoparticles by using three factors such as metabolic activity, live/dead assay, and spheroid surface area was evaluated using two different methods (2D vs 3D) under treatment with various concentrations of silver nanoparticles at different times. The results showed that different cells types, cancer and/or normal lung cells, have significant differences. In addition, it was observed that distinct differences in terms of cytotoxicity of silver nanoparticles between 2D and 3D culture systems and also the rate of growth/non-growth of spheroids are highly depended on cell type and various concentrations have fundamental importance in such studies. The present study provides evidence that cellular dimensions (3D vs 2D) play a pivotal role in the results and outcomes of inflammation and cytotoxicity with nanoparticles due to the spatial-temporal structure.
Maryam Vesal, Zahra Vaezi, عبداله الهوردی, Hossein Naderi-Manesh,
Volume 15, Issue 4 (10-2024)
Abstract
In recent years, targeted drug delivery systems have emerged as a promising approach to increase the efficacy and minimize side effects of therapeutic agents. Cerasomes are a special type of liposomes with covalent siloxane networks on the surface that provide exceptional morphological stability while retaining all the beneficial properties of liposomes. Cerosomes provide a unique platform for drug encapsulation and delivery due to their biocompatibility, stability, controllable release, and long-term storage. In this research, an attempt has been made to engineer the surface of cerosomes to increase the selectivity and efficiency of drug delivery. In such a way that the Herceptin antibody is placed on the surface of the serosa and allows the precise targeting of HER2+ cells. Then, the physicochemical characteristics of antibody-functionalized cerosomes, including size and surface charge 229±15.6 nm and 13.5±1.2 mV were respectively obtained. The results of IR and fluorescence spectrum showed that the antibody was successfully attached to the surface of cerasome with a binding efficiency of 64%. These results prove the basic mechanisms governing the synthesis of immunocerasomes and provide a valuable approach for future developments in targeted drug delivery systems.