

ماهنامه علمي پژوهشي

مهندسي مكانيك مدرس

mme.modares.ac.ir

تحلیل و شبیه سازی دینامیکی سیستم ارابه فرود هواپیما

 *3 مرتضى حقبيگى 1 ، احسان بدريكوهى 2 ، بيژن محمدى

- 1- دانشجوی کارشناسی ارشد، دانشکده مهندسی مکانیک، دانشگاه علم و صنعت ایران، تهران
 - 2- دانشجوی دکتری، دانشکده مهندسی هوا فضا، دانشگاه صنعتی شریف، تهران
 - 3- استادیار، دانشکده مهندسی مکانیک، دانشگاه علم و صنعت ایران، تهران
- * تهران، دانشگاه علم و صنعت ایران، دانشکده مکانیک، صندوق پستی bijan_mohammadi@iust.ac.ir ،16765-163

چکیده

اطلاعات مقاله

مقاله پژوهشی کامل دریافت: 16 اردیبشهت 1394 پذیرش: 14 خرداد 1394 ارائه در سایت: 07 تیر 1394 ارابه فرود تحلیل دینامیکی شبیهسازی فرود اسپین آپ

ارابه فرود یکی از اصلی ترین زیر سیستمهای پرنده است و به دلیل بارهای بسیار شدیدی که به آن و مجموعه اطرافش وارد می شود از جهت سازه ای دارای اهمیت زیادی است. استفاده از روشهای سنتی و تخمینی برای محاسبه بار فرود سبب محاسبه غیر دقیق این بارها شده و وزن زیادی را به سازه تحمیل می کند. از طرفی استفاده از مدل سازی های نرم افزاری نیازمند داشتن اطلاعات دقیقی از سیستم ارابه فرود می باشد که غالبا در مراحل اولیه طراحی هواپیما در اختیار نیست و همچنین پیچیدگیهای زیادی را به همراه دارد. در این تحقیق با هدف افزایش دقت محاسبات برای بارگذاری فرود هواپیما، هر یک از ارابه های فرود به صورت یک سیستم فنر و میراگر مدل شده و با به دست آورن معادلات دینامیکی حاکم بر برخورد هواپیما با زمین و انتقال این معادلات به فضای حالت و سپس حل عددی آنها، نیروهای حاصل از این برخورد محاسبه شده، همچنین پدیده اسپین آپ نیز به کمک همین تحلیلهای دینامیکی شبیه سازی می شود. به منظور نشان دادن توانمندی روش ارائه شده و استفاده از آن در طراحی سازه هواپیما، متداول ترین سناریوهایی که در استانداردهای هوایی آمده، برای یک هواپیمای مشخص شبیه سازی شده و استفاده از آن در طراحی سازه هواپیما، متداول ترین سناریوها شامل فرود با سه چرخ، فرود با دو چرخ و فرود تک چرخ می باشد که در هر کدام نیروهای عمودی اعمال شده بر هر یک از ارابههای فرود بر حسب زمان، حداکثر نیروی اسپین آپ، میزان جابجایی ارابهها و تغییرات موقعیت خطی و دورانی مرکز ثقل پرنده بر حسب زمان استخراج شده است.

Dynamic Analysis and Simulation of an Aircraft Landing Gear System

Morteza Haghbeigi¹, Ehsan Badri-Kouhi², Bijan Mohammadi^{1*}

- 1- School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran.
- 2- Department of Aerospace Engineering, Sharif University of Technology, Tehran, Iran
- * Tehran, Iran University of Science and Technology, School of Mechanical Engineering, P.O.Box: 16765-163, Bijan_Mohammadi@iust.ac.ir

ARTICLE INFORMATION

ABSTRACT

Original Research Paper Received 06 May 2015 Accepted 04 June 2015 Available Online 28 June 2015

Keywords: Landing gear Dynamic Analysis Landing Simulation Spin-Up Load

One of the major subsystems of each airplane is landing gear system which must be capable of tolerating extreme forces applied to the airplane during landing. Using conservative techniques to find landing loads result in overestimation and unnecessary extra structural weight. New commercial softwares can simulate real landing conditions with acceptable accuracy if detailed mechanical data about landing gear system subparts are provided. Although these softwares work well but due to lack of detailed information about the subparts at the conceptual design phase, complexity and time consuming of modeling, expensive license price, etc. they do not seem to be the best choice for design purpose. In this study, in order to calculate landing loads more precisely than the estimating conservative methods, flight dynamic differential equations of an airplane during landing phase are derived and through numeric and state space techniques are solved for different initial conditions including, three point landing, two point landing and one wheel landing. Each landing gear of the airplane is modeled as a two-degree of freedom mass-springdamper set. Time history of the airplane center of gravity, pitch and roll angle, vertical landing loads of each landing gear and their spin-up loads for different landing types (different initial conditions) are obtained to show capabilities of this new, fast and accurate landing simulation code, generated.

هه کیفیت فراهم می کند و راحتی سرنشینان و سلامت سازه هواپیما بستگی به کیفیت فراهم می کند و راحتی سرنشینان و سلامت سازه هواپیما بستگی به کیفیت فرده دارد.

ارابه فرود سیستمی است که مستعد بیشترین خرابی در حمل و نقل هوایی است. طبق مطالعه انجام شده در آمریکا، بین سالهای 1958 تا 1993 در مجموع 1408 مورد سانحه وجود داشته که حدود یک سوم آنها مربوط

از مهمترین جنبههای مورد بررسی در طراحی هواپیما، بررسی اثرات ناشی از فرود هواپیما بر سازه و نقش ارابه فرود به عنوان جذب کننده انرژی ناشی از فرود و انتقال دهنده نیروها به سازه هواپیما میباشد. سیستم ارابه فرود امکان حرکت مطلوب بر روی زمین و قابلیت برخاست و نشست برای هواپیما را

1-مقدمه

به ارابه فرود بوده است [1]. لذا ارابه فرود یکی از سیستمهای هواپیما است که علاوه بر نیاز به دقت و کیفیت بالا در طراحی، دارای بیشترین نیاز به نگهداری و بازرسی دورهای جهت تضمین سلامت پرواز یک هواپیما است. ارابه فرود در هواپیما دارای پنچ وظیفه اساسی است. این وظایف عبارتند از [2]:

- 1. جذب ضربههای فرود و حرکات زمینی
- 2. توانایی انجام مانورهای زمینی شامل حرکات زمینی، پیمودن مسافت برای برخاست 1 ، پیمودن مسافت برای فرود 2 و هدایت
 - 3. ترمز گیری در هنگام حرکت بر روی باند
 - 4. قابلیت کشش هواپیما توسط کشنده ⁴ بر روی باند
 - 5. محافظت بدنه هواپیما از برخورد با سطح زمین

مجموعه ارابه فرود از زیر سیستمهای مختلف و پیچیدهای مانند سیستم هوا/زمین 5 ، ترمز، سیستم ضد لغزش 6 ، سیستم هدایت و سیستم ضربه گیر تشکیل شده است.

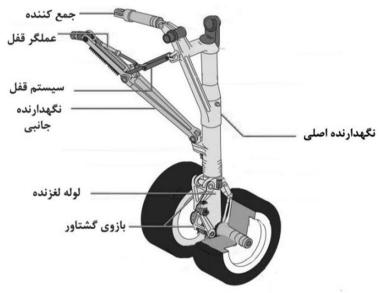
برای جذب ضربات ناشی از فرود از سیستم ضربه گیر استفاده می گردد. این سیستم قسمت اعظم ضربات وارده هنگام فرود را جذب می نماید. تایرها نیز قسمت کوچکی از ضربه را جذب می کنند. برای کاهش سرعت هواپیما پس از فرود از ترمزها استفاده می گردد. از آنجایی که هنگام استفاده از ترمز احتمال سر خوردن وجود دارد از سیستم ضد لغزش برای مقابله با آن استفاده می گردد. همچنین برای هدایت هواپیما بر روی زمین، ارابه دماغه مجهز به سیستمی موسوم به سیستم هدایت چرخ دماغه شده است.

سیستم ارابه فرود و ضربه گیر هواپیما از زمان ساخت اولین هواپیما تاکنون دستخوش تغییرات و پیشرفتهای بسیاری بوده است. اما امروزه سیستم رایج ارابه فرود به شکل سه چرخ میباشد که از دو مجموعه ارابه فرود اصلی و یک ارابه فرود دماغه و در دو طرف مرکز ثقل هواپیما تشکیل شده است. سیستم ارابه فرود اکثر هواپیماهای امروزی شامل اجزای زیر میباشد [3]:

- 1- ضربهگیر
- 2- نگهدارنده اصلی¹⁰
 - 3- لوله لغزنده ¹¹
- 4- سیلندر محرک جمع کننده 12
 - 5- نگهدارنده جانبی ¹³
 - 6- سيستم قفل و عملگر آن
 - 7- بازوی گشتاور ¹⁵

در شکل 1، یک ارابه فرود به همراه اجزاء اصلی آن نشان داده شده است.

روشهای مختلفی برای بررسی دینامیک ارابه فرود وجود دارد. بهترین روش شبیه سازی دینامیکی ارابه فرود، استفاده از شیوههای تجربی است که دو روش برای انجام آن وجود دارد. اولین روش آزمون سقوط ¹⁶ است. در این


- 1- Take off roll 2- Landing roll
- 3- Steering
- 4- Towing
- 5- Air/Ground Logic
- 6- Anti-Skid
- 7- Three Cycle
- 8- Main Landing gear
- 9- Nose Landing gear
- 10- Main Fitting
- 11- Sliding Tube
- 12- Retraction Actuator Cylinder
- 13- Slide Stay Assembly
- 14- Lock stay Assembly and Actuator
- 15- Torque and Slave Links
- 16- Drop test

روش در آزمایشگاه شرایط فرود بر روی ارابه فرود واقعی شبیهسازی شده و نتایج آن را با استفاده از حسگرهای اندازه گیر شتاب، جابجایی، سرعت و نیرو استخراج می کنند. در شکل 2 دستگاه آزمون سقوط موسسه هوانوردی لهستان نشان داده شده است [4].


در روش دوم ارابه فرود با عملکردی مشابه ارابه فرود واقعی ساخته شده و سپس سیستمهای اندازه گیر و سیستمهای جمع آوری اطلاعات بر روی آن نصب می شود. سپس این ارابه فرود در زیر هواپیما نصب می شود. پس از نصب، حالتهای متفاوت فرود آزمایش شده و توسط سیستمهای اندازه گیر نتایج آزمون استخراج و مورد تجزیه و تحلیل قرار داده می شود. این روش دقیق ترین روش شبیه سازی دینامیکی ارابه فرود است. بطور مثال مرکز تحقیقات هوایی ناسا، هواپیمای کانویر 17990 که یک جت مسافربری است را برای انجام این آزمون تجهیز کرد [5].

شبیه سازی دینامیکی به روشهای ذکر شده بسیار پر هزینه و زمان بر است ، بنابراین با تهیه نمونه رایانهای که بتواند شرایط فرود را به طور کامل شبیه سازی کند می توان زمان و هزینه را بطور موثری کاهش داد. در حال حاضر نرمافزارهای مختلفی مانند ادمز ¹⁸ وجود دارد که با ویژگیهای منحصر به فرد خود توانایی شبیه سازی دینامیکی فرود را دارند.

اما مدل سازی در این نرم افزارها نیاز به در اختیار داشتن اطلاعات دقیقی از سیستم ارابه فرود هواپیما دارد که غالبا این اطلاعات در مراحل اولیه طراحی سازه و بارگذاری در اختیار تیم طراحی نیست. لذا همچنان نیاز به

شكل 1 اجزاى اصلى ارابه فرود اصلى [3]

شكل 2 دستگاه آزمون سقوط ارابه فرود [4]

روشها تحلیلی و نیمه تحلیلی وجود دارد. در این روشها هر یک از ارابهها به صورت یک یا چند سیستم جرم، فنر و میراگر با سطوح مختلفی از دقت مدل میشوند و سپس با استخراج و حل عددی معادلات حرکت حاکم بر آنها فرآیند فرود شبیهسازی میشود. این روشها علاوه بر اینکه سرعت بسیار بالایی در انجام محاسبات دارند، بررسی نقش پارامترهای مختلف مسئله را نیز به نسبت مدلسازی در نرمافزار و یا انجام تست بسیار آسان تر می کنند.

در سال 1954، مورلند یکی از معروفترین تحلیلها را در مورد حرکت نوسانی ارابه فرود ارائه داد. وی رفتار تایر را الاستیک فرض کرد و نشان داد ارابه فرود می تواند در محور جاذب انرژی، جابجایی دورانی و خمشدگی جانبی نسبت به بدنه داشته باشد[6]. لای در سال 1970، تحریک ناشی از نابالانسی از طریق مدل دو درجه آزادی را مورد مطالعه قرار داد. در سال 1976، تجزیه و تحلیل غیرخطی ارابه فرود توسط بلک ارائه شد. بررسی او شامل عکسالعملهای پیچشی و همچنین اصطکاک خشک بین سیلندر و پیستون بود [7].

در سال 1978، استيونز در تجزيه و تحليل حركت لرزشي گاردن، ارابه فرود را با میراگر غیرخطی که متناسب با توان دوم سرعت حرکت پیچشی بود، شبیه سازی نمود [8]. در سال 1980، گروسمن از روش تحلیلی برای تعیین دامنه نوسانی چرخ در سرعت بیشتر از سرعت بحرانی آن استفاده کرد [9]. كولار در سال 2003 رفتار ارابه فرود هواپيما را در يک حالت فرود فرضی و در سه فاز جداگانه بررسی کرده است. در این تحلیل هر ارابه فرود به صورت یک فنر و میراگر موازی مدل شده است [10]. در سال 2008، خاپانه شبیه سازی دینامیکی ارابه فرود و تعامل آن با ترمزها را در رساله دکتری خود انجام داده است. در این شبیه سازی که توسط نرم افزار سیمپک 1 انجام شده، نوسانات ارابه فرود مورد بررسی قرار گرفته است و در نهایت الگوریتمی برای ترمزگیری ارائه داده است [11]. حیدری و مظفری در سال 2011، دینامیک و پایداری یک ارابه فرود را مورد بررسی قرار دادند و معادلات دینامیکی حاکم بر یک ارابه فرود را بدست آورده و با نتایج حاصل از مدلسازی در نرم افزار ادمز مقایسه کردهاند [12]. کریستوفر در سال 2013 به تحلیل دینامیکی ارابه فرود دماغه به صورت دو درجه آزادی پرداخته است .[13]

در تحلیلهای اشاره شده، عموماً معادلات حاکم بر یک ارابه فرود بدست آمده و تمرکز محققان بر رفتار آن ارابه فرود بوده است [6-8، 12، 13]، اما در پژوهش حاضر با هدف استفاده از نتایج در شناخت بارگذاریها و طراحی سازه هواپیما، معادلات دینامیکی برای مجموعه هر سه ارابه فرود هواپیما بدست آمده که هر ارابه با یک فنر و میراگر موازی به عنوان ضربهگیر و یک فنر به عنوان تایر مدل شده است. همچنین در مطالعات سایر محققین، رفتار سیستم ارابه فرود در سناریوهای مختلف فرود بررسی نشده اما در مطالعه حاضر، شرایط مختلف سناریوهای فرود نیز مد نظر قرار گرفته است. این سناریوها در غالب استانداردهای هوایی به عنوان وضعیتهای اصلی فرود بیان شدهاند. برای محاسبه مقادیر نیروی حاصل از فرود در این سناریوها، روابط تخمینی بر مبنای روش انرژی وجود دارد. در این تحقیق با حل عددی معادلات دینامیکی مقادیر دقیق تر نیروهای فرود بهدست آمده و با مقادیر تخمینی مقایسه شده است. همچنین نحوه و میزان جابجایی هر یک از ارابهها تخمینی مقایسه شده است. همچنین نحوه و میزان جابجایی هر یک از ارابهها می آید که می تواند نقشی تعیین کننده در طراحی سایر زیرسیستمهای سازه-

ای و حتی سیستمی هواپیما ایفا نماید.

2- بارگذاری ارابه فرود

ارابه فرود باید قادر به جذب بارهای حرکات زمینی، فرود و همچنین قادر به انتقال بخشی از این نیروها به بدنه باشد. بزرگی این نیروها بستگی به نوع هواپیما، ضربهگیر و همچنین ماموریت آن دارد. سه نوع بار در طراحی ارابه فرود باید در نظر گرفته شود [14]:

- 1- بارهای عمودی که توسط نرخ برخورد با زمین و حرکات زمینی بر روی سطوح ناهموار ایجاد میشود.
- 2- بارهای طولی که عمدتا توسط اسپین آپ 2 ، بارهای ترمزگیری و بارهای اصطکاک ایجاد می شود.
- 3- بارهای جانبی که عمدتا توسط فرود جانبی ، حرکات زمینی در حالت باد جانبی و چرخش زمینی ایجاد میشود.

دستورالعملهای مختلفی در رابطه با پیکرهبندیها و ساختمان ارابه های فرود وجود دارد. همچنین در این دستورالعملها، الزاماتی برای نیروهای اعمال شده به ارابه فرود در شرایط مختلف فرود مشخص شده است. مهمترین این دستورالعملها عبارتند از قوانین و مقررات داخلی آمریکا تحت عنوان قوانین و مقررات ملی کشورهای اروپایی قوانین و مقررات ملی کشورهای اروپایی به نام جار 4 ، مقررات هواپیمایی نظامی بریتانیا 5 ، مقررات هواپیمایی نظامی بریتانیا 6 ، مقررات متحده 6 [13].

قوانین هوایی ایران مطابقت بیشتری با قوانین فار دارد. فار دارای 189 بخش بوده و بخش 25 آن یعنی فار 25 مربوط به هواپیماهای ترابری عمومی است که وزن بیش از 5700 کیلوگرم دارند [15]. در تحقیق حاضر برای بدست آوردن نتایج عددی و مقایسه با استانداردها از مشخصات تقریبی هواپیمای ایرباس 320 A استفاده شده است، لذا الزامات استاندارد فار 55 مورد استفاده قرار گرفته است.

برای بررسی بارهای اعمالی به هواپیما باید رفتار دینامیکی ضربه گیر را شناخته و همچنین عواملی که در مقدار نیروهای اعمال شده تاثیر مهمی دارند بررسی شوند. سپس با بررسی و پیاده سازی سناریوهای مختلف فرود، مقادیر نیروهای ایجاد شده هنگام فرود مورد تحلیل قرار گیرد.

2-1- مشخصههای ضربهگیر

مقادیر نیروهای ایجاد شده هنگام فرود هواپیما، به مشخصههای ضربه گیر ارابه فرود و همچنین به میزان اتلاف انرژی حاصل از سرعت عمودی بستگی دارد. راندمان ضربه گیر به راحتی توسط نمودار نیرو— تغییرشکل 7 تعریف می شود. مساحت زیر این منحنی میزان جذب انرژی را نشان می دهد. برای مثال راندمان یک فنر خطی 50 می باشد. مشخصه های عملکرد ضربه گیر بستگی دارد به [14]:

الف) نوع ضربه گیر

ب) سرعت برخورد و نیروی متناسب با جرم حمل شده توسط آن

ج) نرخ تغییر شکل

اکثر هواپیماها از ضربه *گ*یرهای نیوماتیک اولئو⁸ استفاده می *ک*نند. این ضربه-

²⁻ Spin Up

³⁻ Federal Aviation Regulation (FAR)

⁴⁻ Joint Aviation Regulation (JAR)

⁵⁻ Defense Standard (Def. Stan)

⁶⁻ Military Standard (MIL)

⁷⁻ Load Deflection Diagram8- Oleo-Pneumatic Shock Absorber

¹⁻ Simpack

گیر دارای فنرهای هوایی 1 در ترکیب با ضربه گیر روغنی 2 می باشد. فنرها انرژی را جذب می کنند و ضربه گیر آن را تلف می کند. هر دو پروسه به طور همزمان اتفاق می افتد. تایرها نیز دارای مشخصات دینامیکی فنری با راندمان حدود 40% هستند. از آنجایی که تغییر شکل تایر تابعی از بارگذاری است، انرژی جذب شده توسط ضربه گیر اصلی خواهد بود.

واضح است که برای الزامات جذب انرژی داده شده و راندمان ضربه گیر، انتخاب ترکیب مناسبی از حداکثر بار و تغییر شکل امکانپذیر میباشد. برای مثال برای جذب مقدار انرژی مشخص با تغییر شکل کم نیروی زیادی اعمال خواهد شد و بالعکس. مناسب است که بیشترین بار دینامیکی را به وسیله تقسیم آن بر بار اعمال شده معادل در شرایط استاتیک به صورت بی بعد تعریف کرد. این نسبت به عنوان ضریب واکنش ضربه گیر 8 6 $^$

2-2- معادله جذب انرژی

مقدار انرژی جذب شده هنگام وقوع ضربه برابر جمع انرژی جنبشی ناشی از سرعت عمودی در لحظه برخورد و انرژی پتانسیل میباشد. انرژی پتانسیل برابر است با ضرب وزن و جابجایی عمودی، در طول لحظه برخورد تا زمانی که ضربه گیر و تایرها به بیشترین مقدار تغییر شکل خود برسند. البته این مقدار انرژی بستگی به میزان خنثی کردن نیروی گرانش توسط نیروی لیفت مارد. گاهی اوقات فرض میشود که نیروی لیفت و وزن در هنگام فرود برابر میباشند و تنها انرژی جنبشی عمودی در نظر گرفته میشود [14].

$$T_{\rm tot} = \frac{1}{2} m V_{\rm v}^2 + mg \, \delta \, (1-K)$$
 (1) که در این رابطه m نمایانگر جرم فرود ⁵ هواپیما، V_V سرعت عمودی هواپیما که در این رابطه g شتاب گرانش زمین، G نسبت نیروی لیفت به نیروی وزن در لحظه تماس و G جابجایی عمودی مرکز گرانش هواپیما از لحظه برخورد چرخها به زمین است.

2-3- سناريوهاي فرود

براساس فار 25 سناریوهای فرود برای هواپیما با ارابه فرود اصلی و دماغه به پنج قسمت تقسیم بندی میشوند که عبارتند از [15]:

- 1- فرود با سه چرخ
- 2- فرود با دو چرخ(دم پایین)
 - 3- فرود با یک چرخ
 - 4- فرود با بار جانبی
 - $^{\circ}$ فرود دو مرحلهای $^{\circ}$

که در این تحقیق سه سناریوی ابتدایی مورد بررسی قرار گرفتهاند. روند استخراج معادلات و محاسبه نیروی عمودی حداکثر وارد به هر یک از این سناریوها در مرجع [14] موجود است و لذا

در ادامه فقط روابط اصلى آن ارائه مىشود.

2-3-1 فرود با سه چرخ

در فرود سه چرخ (شکل 3)، دماغه همزمان با چرخهای اصلی با زمین تماس پیدا می کند و چرخهای اصلی و چرخ های دماغه به طور مشترک انرژی عمودی را جذب می کنند. مقادیر نیروهای اسپین آپ و جانبی به ترتیب با 25% و 40% بار عمودی در نظر گرفته می شوند [15].

نیروهای عمودی برای هر کدام از ارابه های فرود اصلی با فرض لیفت مساوی با وزن، برابر است با:

$$(R_{\rm M})_{\rm L} = \frac{mV_{\rm v}^2(L_{\rm n} - \mu h)}{4 \, \eta_{\rm M} \delta_{\rm M}(l_{\rm m} + l_{\rm n})}$$
 (2)

که در این معادله μ ضریب اصطکاک 7 چرخ با زمین، Lm فاصله طولی ارابه فرود مرکز فرود اصلی از مرکز گرانش هواپیما، L فاصله طولی ارابه فرود دماغه از مرکز گرانش هواپیما از سطح زمین و $\eta_{\rm M}\delta_{\rm M}$ برابر است با:

$$\eta_{\rm M}\delta_{\rm M}=(0.47\delta_{\rm MT}+\eta_{\rm MS}\delta_{\rm MS})\tag{3}$$

که در آن $\delta_{\rm MS}$ حداکثر تغییر شکل تایر ارابه اصلی، $\delta_{\rm MS}$ حداکثر تغییر شکل فربه گیر اصلی و $\eta_{\rm MS}$ راندمان ضربه گیر است. همچنین ضریب $\delta_{\rm MS}$ برابر راندامان تقریبی تایر است.


نیروی عمودی ارابه دماغه در این حالت از فرود برابر است با:

$$(R_{\rm N})_{\rm L} = \frac{mV_{\rm v}^2(l_{\rm m} + \mu h)}{2\,\eta_{\rm N}\delta_{\rm N}(l_{\rm m} + l_{\rm n})} \tag{4}$$

مشخصات ارابه فرود دماغه، نظیر راندمان نیز مانند ارابه فرود اصلی تعریف می شود.

2-3-2 فرود با دو چرخ (حالت دم پایین)

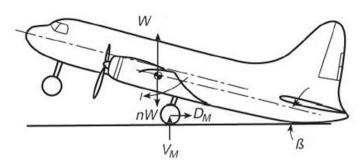
در فرود دو چرخ که بار اولیهای بر روی ارابه دماغه وجود ندارد، از آنجایی که محل اثر نیروهای ارابه اصلی عقبتر از مرکز گرانش پرنده میباشد گشتاوری به پرنده اعمال میشود که تمایل به پایین آوردن ارابه دماغه دارد. هرچه زاویه حمله پرنده در زمان فرود دو چرخ با دم پایین بیشتر باشد، سرعت اصابت ارابه دماغه به زمین و در نتیجه نیروی عمودی در دماغه بیشتر خواهد شد، لذا بحرانی ترین نوع فرود دو چرخ زمانی است که پرنده کاملا دم افقی خود را پایین آورده باشد (شکل 4). بر اساس استاندارد زاویه در این فرود متناظر است با حداکثر زاویه واماندگی 8 یا حداکثر زاویهای که هیچ کدام از قطعات هواپیما بجز ارابه فرود اصلی با زمین برخورد نداشته باشد. [15] بارهای ارابه فرود اصلی برای حالتی که نیروی لیفت برابر با وزن باشد برابر با هرای است با [14]:

شكل 3 فرود سه چرخ هواپيما [15]

⁷⁻ Friction coefficient

⁸⁻ Stall

¹⁻ Air Spring


²⁻ Oil-Dashpot

³⁻ Shock Absorber Reaction Factor

⁴⁻ Lif

⁵⁻ Landing mass

⁶⁻ Rebound landing

شكل 4 فرود دو چرخ هواپيما [15]

در این حالت نیروی اصطکاک محوری برابر است با:

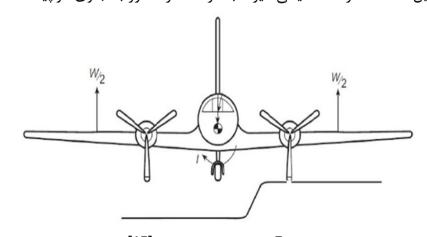
$$D = \mu \left(R_{\mathsf{M}} \right)_{\mathsf{L}} \tag{6}$$

بارهای ارابه فرود دماغه با شرایط ذکر شده برابر است با:

$$(R_{\rm N})_{\rm L} = \frac{2 (R_{\rm M})_{\rm L} (l_{\rm m} + \mu h)}{[(l_{\rm m} + l_{\rm n})(l_{\rm n} - \mu h)]^{0.5}}$$
(7)

3-3-2 فرود با یک چرخ

برای حالت فرود با یک چرخ، فرض می شود که هواپیما در حالت تراز است و با یک چرخ با زمین مطابق شکل 5 تماس برقرار می کند. در این حالت نیروهای عکس العمل زمین باید همانند حالت فرود با سه چرخ باشد [15].


نیروی حاصل از فرود تک چرخ در استانداردهای دیگر نیز اغلب برابر فرود دو چرخ فرض شده است. زیرا محاسبه سهم نیروهای هر یک از دو ارابه اصلی و ارابه دماغه بدون انجام شبیهسازی دینامیکی امکان پذیر نیست. اما بار حاصل از این نوع فرود که میتواند ناشی از شرایط نامناسب آب و هوایی، فرود بر سطح ناهموار و غیره باشد، ممکن است بیشتر از فرود دو چرخ شود.

بحرانی ترین حالت برای فرود تک چرخ زمانی است که هواپیما دارای بیشترین زاویه رول 1 در زمان فرود باشد. حداکثر زاویه رول در زمان فرود، که مطابق مرجع 2 با علامت φ نشان داده می شود (شکل 6)، برابر کوچکترین زاویه ای است که ارابه فرود با نوک بال 2 هواپیما و یا هریک از موتورهای نصب شده زیر بال 3 می سازد. تجاوز از این زاویه به دلیل امکان اصابت موتور و یا بال با سطح زمین مجاز نمی باشد و مقدار متداول آن بین 3 تا 3 درجه است.

همانطور که در شکل 7 نشان داده شده، مقدار حداقل زاویه 9 در یک هواپیمای مسافربری عادی 4 ، برای حالتی که جاذب های ضربه به طور کامل جمع و تایرها بدون باد باشند، یعنی ارتفاع هواپیما کمینه باشد، تقریبا برابر با 5 درجه است [2].

4-2- يديده اسيين آپ

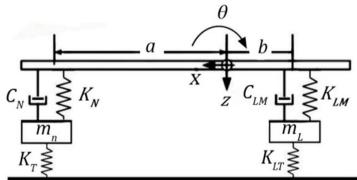
در هنگام فرود و زمانی که تایرهای هواپیما با زمین تماس پیدا میکنند، به دلیل اختلاف سرعت محیطی تایرها با سرعت حرکت رو به جلوی هواپیما،

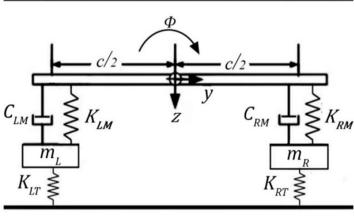
شكل 5 فرود تك چرخ هواپيما [15]

4- Conventional Passenger Aircraft

اصطکاک لغزشی بین تایرها و جاده ایجاد می شود. این اصطکاک علاوه بر این که سرعت چرخش تایرها را با سرعت رو به جلو هواپیما یکسان می کند سبب خمش محور مجموعه ارابه فرود شده که به این پدیده اسپین آپ 5 گفته می شود.

برای محاسبه حداکثر نیروی اسپین آپ در یک ارابه فرود لازم است تا با استفاده از نمودار تغییرات نیروی عمودی هر ارابه در طول زمان، مقدار نیروی عمودی در لحظه رسیدن سرعت تایر به سرعت پرنده (زمان اتمام اسپین آپ) خوانده و در ضریب اصطکاک جنبشی دو سطح ضرب شود. اما در استانداردها ضریب اصطکاک در مقدار حداکثر نیروی عمودی ضرب شده که این موضوع سبب تخمین بیش از حد این نیرو خواهد شد.


3- مدل تحليلي سيستم ارابه فرود


در این قسمت مدل تحلیلی از مجموعه ارابههای فرود یک هواپیما ارائه شده است. در این مدل خاصیت فنری و میرایی ضربه گیر هر یک از ارابهها با یک فنر و میراگر موازی مدل شده است. همچنین خاصیت فنریت تایر با یک فنر که با فنر و میراگر ضربه گیر سری شده مدل می شود. هواپیما دارای سه درجه آزادی در مرکز ثقل شامل جابجایی عمودی، چرخش رول 6 و چرخش پیچ می باشد.

طرح کلی مدل در شکل 7 نشان داده شده است. این شکل نشان دهنده سیستم ارابه فرود متداول سه چرخ میباشد. همچنین پارامترهای مربوط به این مدل که در تحلیل مورد استفاده قرار گرفتهاند در جدول 1 معرفی شده و مقادیر آنها مشخص شده است. همانطور که قبلا اشاره شد مقادیر این پارامترها تخمینی از هواپیمای ایرباس A320 میباشد.

شکل 6 حداکثر زاویه برای فرود تک چرخ هواپیما [2]

شکل 7 طرح کلی سیستم ارابه فرود سه درجه آزادی

¹⁻ Maximum Roll Angle

²⁻ Wing Tip

³⁻ Wing Mounted engines

⁵⁻ Spin Up

⁶⁻ Roll Angle

⁷⁻ Pitch Angle

جدول 1 تعریف پارامترهای مورد استفاده در شبیه سازی فرود و مقادیر آنها بر اساس مرجع [16]

مرجع [10]				
مقدار	علامت	پارامتر موجود در مدل		
64500 kg	т	وزن فرود هواپيما		
15×10 ⁵ N/m	\mathcal{K}_{LM}	سفتی ارابه فرود اصلی سمت چپ		
15×10 ⁵ N/m	K_{RN}	سفتی ارابه فرود اصلی سمت راست		
15×10 ⁵ N/m	K_{N}	سفتى ارابه فرود دماغه		
3×10⁶ N/m	K_{LT}	سفتی تایر سمت چپ		
$3 \times 10^6 \text{N/m}$	K_{LT}	سفتی تایر سمت چپ		
3×10 ⁶ N/m	\mathcal{K}_{NT}	سفتى تاير دماغه		
1×10 ⁵ N.s/m	\mathcal{C}_{LM}	ضریب میرایی ارابه فرود اصلی سمت چپ		
1×10 ⁵ N.s/m	\mathcal{C}_{RM}	ضریب میرایی ارابه فرود اصلی سمت راست		
1×10 ⁵ N.s/m	C_{N}	ضریب میرایی ارابه فرود دماغه		
1278370 kg.m ²	/ _{xx}	ممان اینرسی حول محور طولی		
3781268 kg.m ²	<i>l</i> _{yy}	ممان اینرسی حول محور عرضی		
10/88 m	а	فاصله ارابه فرود دماغه از مركز جرم		
1/76 m	b	فاصله ارابه فرود اصلی از مرکز جرم		
7/59 m	С	فاصله عرضی در ارابه فرود اصلی 1		
3/05 m	V_{Z}	سرعت عمودى فرود هواپيما		
300 kg	$m_{\!\scriptscriptstyle \perp}$	جرم ارابه فرود اصلی چپ		
300 kg	$m_{\rm R}$	جرم ارابه فرود اصلی راست		
300 kg	m_{N}	جرم ارابه فرود دماغه		

3-1- معادلات حركت

مدل در نظر گرفته شده دارای شش درجه آزادی است که عبارتاند از:

z: جابجایی عمودی مرکز گرانش

جابجایی عمودی ارابه فرود اصلی چپ: z_L

ZR: جابجایی عمودی ارابه فرود اصلی راست

ZN: جابجایی عمودی ارابه فرود دماغه

ا جابجایی زاویهای پیچ بر θ

 Φ : جابجایی زاویهای رول

z سرعت جابجایی عمودی و z شتاب آن است، سرعت و شتاب برای دیگر متغیرها نیز به همین شکل تعریف شده است.

جابجاییها بر حسب متر و زوایا بر حسب رادیان میباشند.

مطابق مرجع [14] در استخراج معادلات فرود با هدف یافتن حداکثر نیروی برخورد، می توان از فرض برابری نیروی لیفت و وزن هواپیما استفاده نمود. با استفاده از معادله لاگرانژ، انرژی جنبشی هواپیما و انرژی پتانسیل ناشی از فنر و میراگر، معادلات حرکت برای شش درجه آزادی سیستم، به صورت زیر بدست می آید [14].

$$m\ddot{z} + (C_{N} + C_{LM} + C_{RM})\dot{z} + (k_{N} + k_{LM} + k_{RM})z - C_{N}\dot{z}_{N} - k_{N}z_{N} - C_{LM}\dot{z}_{L} - k_{LM}z_{L} - C_{RM}\dot{z}_{R} - k_{RM}z_{R} + (C_{LM}b + C_{RM}b - C_{N}a)\dot{\theta} + (k_{LM}b + k_{RM}b - k_{N}a)\theta + \frac{c}{2}(C_{RM} - C_{LM})\dot{\phi} + \frac{c}{2}(k_{RM} - k_{LM})\dot{\phi} = 0$$
(8)

$$m_{L}\ddot{z}_{L} + C_{LM}\dot{z}_{L} + (k_{LT} + k_{LM})z_{L} - C_{LM}\dot{z} - k_{LM}z - C_{LM}\dot{b}\dot{\theta} - k_{LM}b\theta + C_{LM}\frac{c}{2}\dot{\phi} + k_{LM}\frac{c}{2}\phi = 0$$
(9)

$$m_{R}\ddot{z}_{R} + C_{RM}\dot{z}_{R} + (k_{RT} + k_{RM})z_{R} - C_{RM}\dot{z} - k_{RM}z - C_{RM}\dot{z} - k_{RM}z - C_{RM}\dot{z} - k_{RM}b\dot{\theta} - k_{RM}b\theta - C_{RM}\frac{c}{2}\dot{\phi} - k_{RM}\frac{c}{2}\phi = 0$$
 (10)

$$I_{xx}\ddot{\phi} + (\frac{c}{2})^{2} (C_{LM} - C_{RM})\dot{\phi} + (\frac{c}{2})^{2} (k_{LM} - k_{RM})\phi + \frac{c}{2} (C_{RM} - C_{LM})\dot{z} + \frac{c}{2} (k_{RM} - k_{LM})z + \frac{c}{2} C_{LM}\dot{z}_{L} + \frac{c}{2} k_{LM}z_{L} - \frac{c}{2} C_{RM}\dot{z}_{R} - \frac{c}{2} k_{RM}z_{R} + b\frac{c}{2} (C_{RM} - C_{LM})\dot{\theta} + b\frac{c}{2} (k_{RM} - k_{LM})\theta = 0$$

$$I_{LM}\ddot{\theta} + (k_{LM}^{2}C_{LM} - k_{LM}^{2}C_{LM})\dot{\theta} + (k_{LM$$

$$I_{yy}\ddot{\theta} + (b^{2}C_{LM} + b^{2}C_{RM} + a^{2}C_{N})\dot{\theta} + (b^{2}K_{LM} + b^{2}K_{RM} + a^{2}K_{N})\theta + (bC_{LM} + bC_{RM} - aC_{N})\dot{z} + (bK_{LM} + bK_{RM} - aK_{N})z + \frac{c}{2}b(C_{RM} - C_{LM})\dot{\phi} + \frac{c}{2}b(k_{RM} - k_{LM})\phi - C_{LM}\dot{z}_{L} - k_{LM}z_{L} - C_{RM}\dot{z}_{R} - k_{RM}z_{R} + C_{N}\dot{z}_{N} + k_{N}z_{N} = 0$$
(13)

برای حل عددی این دستگاه معادلات دیفرانسیل، از تکنیک فضای حالت 2 استفاده شده است. از شش معادله حرکت موجود دوازده معادله حالت به دست می آید که می توان آنها را به فرم ماتریسی فرمول 14 نمایش داد.

$$\dot{Y} = AY + B \tag{14}$$

بردار Y شامل متغیرهای حالت و نرخ تغییرات آنها، ماتریس A ضرایب و ماتریس B شامل مقادیر ثابت دستگاه معادلات میباشد.

$$Y = [Z_{\mathrm{N}} \dot{Z}_{\mathrm{N}} Z_{\mathrm{L}} \dot{Z}_{\mathrm{L}} Z_{\mathrm{R}} \dot{Z}_{\mathrm{R}} Z \dot{Z} \theta \dot{\theta} \phi \dot{\phi}]^{\mathrm{T}}$$
(15)

با تعریف کردن مقادیر اولیه متغیرهای حالت می توان خروجیهای مورد نظر را بدست آورد. این مقادیر اولیه مشخص کننده سناریوهای مختلف فرود می باشند که می تواند یکی از حالتهای تعیین شده توسط استاندارد بوده و یا هر نوع سناریوی دیگری را در بر گیرد. خروجیهای مورد نظر از حل دستگاه شامل مقادیر پارامترهای زیر بر حسب زمان و نیز نرخ تغییرات آنها بر حسب زمان می باشد.

- جابجایی عمودی مرکز ثقل هواپیما
 - زاویه پیچ هواپیما
 - زاویه رول هواپیما
- جابجایی عمودی هر یک از سه ارابه فرود
 - نیروی عمودی در هر یک از ارابهها
 - حداکثر نیروی اسپین آپ

V لازم به ذکر است که در شبیه سازی و استخراج نتایج، تنها جابه جایی های ناشی از جمع شدگی ارابه و تایر در نظر گرفته شده و هر یک از ارابه های فرود و همچنین سازه هواپیما به صورت صلب 3 مدل سازی می شوند.

3-2- محاسبه نيروهاي عمودي و افقي

نیروهای عمودی در هر کدام از ارابه های فرود طبق فرمول های زیر محاسبه میشوند:

$$F_{\rm r} = K_{\rm RM} \left(z + b\theta + \frac{c}{2}\phi - z_{\rm R} \right) + C_{\rm RM} \left(\dot{z} + b\dot{\theta} + \frac{c}{2}\dot{\phi} - \dot{z}_{\rm R} \right)$$

$$F_{\rm l} = K_{\rm LM} \left(z + b\theta - \frac{c}{2}\phi - z_{\rm L} \right)$$

$$(16)$$

$$+ C_{RM} \left(\dot{z} + b\dot{\theta} - \frac{c}{2}\dot{\phi} - \dot{z}_{L} \right)$$

$$(17)$$

$$(18)$$

$$F_{\rm n}=K_{\rm N}(z-a\theta-z_{\rm N})+C_{\rm N}(\dot z-a\dot\theta-\dot z_{\rm N})$$
 (18)
 $c_{\rm N}=F_{\rm N}$ $c_{\rm N}=F_{\rm N}$ $c_{\rm N}=F_{\rm N}$ $c_{\rm N}=F_{\rm N}=F_{\rm N}$ $c_{\rm N}=F_{\rm N}=F_{\rm N}$ $c_{\rm N}=F_{\rm N}=F_{\rm N}=F_{\rm N}$ $c_{\rm N}=F_{\rm N$

 $m_{N}\ddot{z}_{N} + C_{N}\dot{z}_{N} + (k_{NT} + k_{N})z_{n} - C_{N}\dot{z} - k_{N}z + C_{N}a\dot{\theta} + k_{N}a\theta = 0$ (11)

²⁻ State Space

³⁻ Rigid

از ضرب کردن مقادیر نیروهای عمودی ارابهها در ضریب اصطکاک جنبشی، با مقدار نیروی اصطکاک f_k در هر کدام از ارابههای فرود در هر لحظه از زمان با استفاده از فرمول 19 بدست می آید.

$$f_k = \mu N \tag{19}$$

N: نیروی عمودی وارد به چرخ

ضریب اصطکاک بین زمین و چرخ: μ

3-3- زمان اتمام اسپین آپ

با محاسبه گشتاور نیروی اصطکاک حول مرکز جرم هر یک از تایرها، شتاب زاویهای آن بدست آمده و در نتیجه، زمان رسیدن سرعت محیطی به سرعت افقی هواپیما با فرض ثابت ماندن سرعت افقی هواپیما تا اتمام اسپین آپ، بدست می آید. باید توجه داشت که نیروی اصطکاک، و در نتیجه شتاب زاویه ای ثابت نمی باشد و با زمان تغییر می کند. همچنین فرض ثابت ماندن سرعت افقی هواپیما با توجه به این که زمان شبیه سازی کسر کوچکی از کل زمان فرود را تشکیل می دهد، فرض قابل قبولی به نظر می رسد [14].

$$\alpha = \frac{\mathsf{r}f_k}{I_{\mathsf{CM}}} \tag{20}$$

$$\omega_t = \alpha t + \omega_0 \tag{21}$$

$$v_t = \omega_t r \tag{22}$$

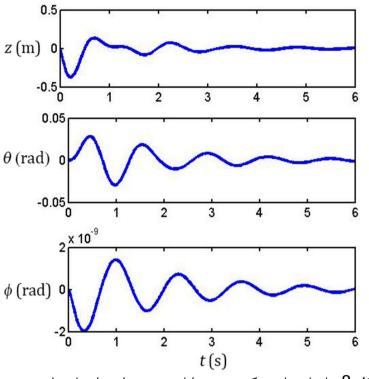
در این روابط r شعاع چرخ، l_{CM} ممان اینرسی قطبی چرخ، ω_t سرعت زاویهای چرخ و ω_t سرعت دورانی اولیه چرخ، ω_t شتاب زاویهای چرخ بر حسب زمان و ω_t سرعت محیطی چرخ بر حسب زمان میباشند. در لحظه اتمام اسپین آپ سرعت افقی هواپیما و سرعت محیطی چرخ با هم برابر میشوند. با صفر فرض کردن سرعت زاویهای اولیه زمان اتمام اسپین آپ به دست می آید.

$$v_{\rm ts} = v_{\rm h} \tag{23}$$

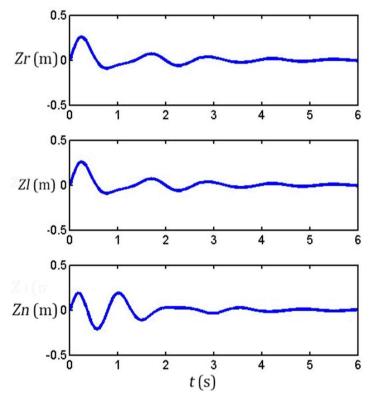
$$ts = \frac{v_{\rm ts}}{r\alpha} \tag{24}$$

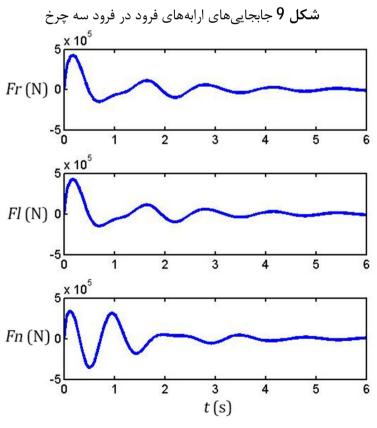
سرعت حرکت افقی هواپیما، ts زمان اتمام اسپین آپ و V_{ts} سرعت محیطی چرخ در لحظه اتمام اسپین آپ میباشد.

4-نتايج


در این بخش شرایط اولیه منطبق بر سه حالت فرود تعریف شده در استاندارد به عنوان ورودی به شبیهساز داده شده و پاسخ پرنده استخراج و ارائه شده است و سپس بیشترین نیروی عمودی بدست آمده از تحلیلها با مقادیری که از فرمولهای 8 تا 13 برای هر حالت محاسبه می شود، مورد مقایسه قرار گرفته است.

4-1- فرود سه چرخ

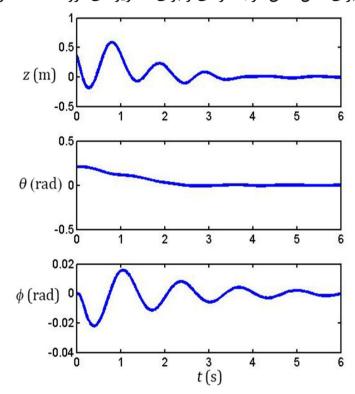

در این سناریو هواپیما با سرعت عمودی اولیه 3 متر بر ثانیه و بدون زوایای پیچ و رول اولیه فرود میآید. همانطور که در شکل 3 مشاهده میشود به دلیل فرود کاملا متقارن، تغییرات زاویه رول بسیار نزدیک به صفر است. تغییرات نیروی ارابههای فرود و زاویه پیچ تحت تاثیر شرایط اولیه، موقعیت ارابههای فرود نسبت به مرکز جرم و مشخصههای ضربه گیر میباشد. همانطور که انتظار میرود جابجاییها و نیروهای عمودی ارابههای فرود اصلی که به ترتیب در شکلهای 9 و 10 نشان داده شده است به یک شکل میباشند و بخش عمدهی نیروی فرود بر ارابههای اصلی وارد میشود.


همانطور که در شکل 10 قابل مشاهده است، پاسخ ماندگار ارابه های فرود برابر صفر است که علت این موضوع خنثی شدن وزن پرنده با نیروی لیفت روی آن است. مطابق فرضی که در فصل قبل بیان شد، در حل معادلات فرض

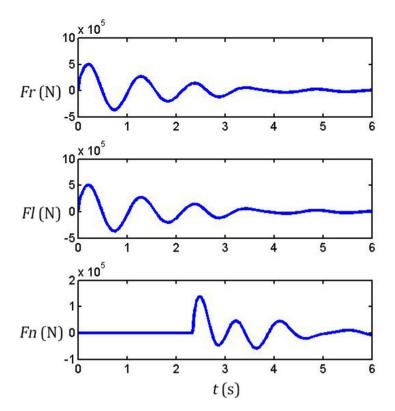
شده است که در لحظات ابتدایی فرود، سرعت افقی هواپیما تغییر نکرده و لذا لیفت آن نیز همچنان برابر نیروی وزن خواهد بود.

شکل 8 جابجاییهای مرکز جرم و زوایای پیچ و رول هواپیما در فرود سه چرخ

شکل 10 نیروهای عمودی ارابههای فرود در فرود سه چرخ


2-4- فرود دو چرخ

در این سناریو هواپیما با سرعت عمودی اولیه 3 متر بر ثانیه و زاویه پیچ اولیه 11 درجه که معادل 0/21 رادیان است، بدون زاویه رول فرود میآید. در فرود دو چرخ همانطور که در شکلهای 12 و 13 قابل مشاهده است، منحنی نیروهای عمودی و جابجایی ارابههای فرود اصلی مشابه یک دیگر و ارابه دماغه تا لحظه صفر شدن زاویه پیچ برابر صفر میباشد. ضربه گیرها در این سناریو تحت جابجایی و نیروی بیشتری نسبت به فرود سه چرخ قرار گرفته-

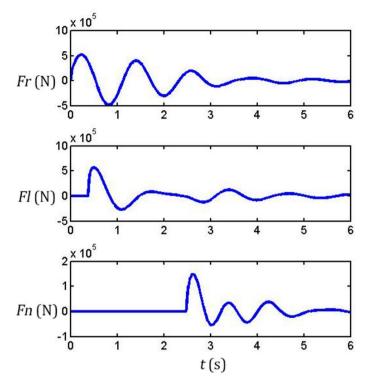

3-4 فرود تک چرخ

در این سناریو هواپیما با سرعت عمودی اولیه 3 متر بر ثانیه، زاویه پیچ اولیه 12 درجه و زاویه رول اولیه 5 درجه فرود میآید. در شکل 14 تغییرات زاویه رول و پیچ هواپیما به وضوح مشاهده میشود. در شکل 15 منحنی جابجایی هر کدام از ارابههای فرود بر حسب زمان ارائه شده است که زمان برخورد ارابه فرود اصلی چپ و ارابه فرود دماغه به ترتیب 0/388 و 2/488 ثانیه بدست میآید. شکل 16 نیز نیروهای عمودی ایجاد شده در هر کدام از ضربه گیرها را نشان می دهد.

بیشترین نیروی عمودی، زمان اتمام اسپین آپ و زمان بیشترین نیروی عمودی برای مدل شش درجه آزادی و برای سناریوهای فرود مختلف در



شکل 12 جابجاییهای ارابههای فرود در فرود دو چرخ


شکل 13 نیروهای عمودی ارابههای فرود در فرود دو چرخ

جدول 2 مورد مقایسه قرار گرفتهاند. در جدول 3 نیز حداکثر نیروهای عمودی حاصل از تحلیل و مراجع [14] مورد مقایسه قرار گرفته است.

T(s) T(s)

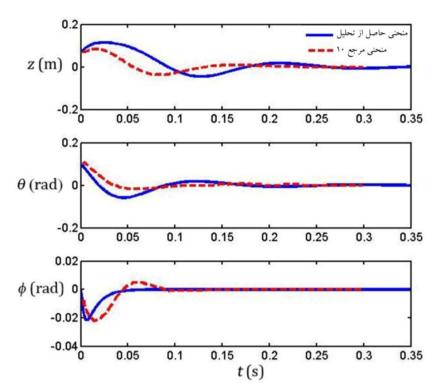
شکل 15 جابجاییهای ارابههای فرود در فرود تک چرخ

شکل 16 نیروهای عمودی ارابههای فرود در فرود تک چرخ

جدول 2 مقایسه نتایج مدل شش درجه آزادی

تک چرخ	دو چرخ	سه چرخ	نوع فرود
5/25×10 ⁵	5/06×10 ⁵	4/26×10 ⁵	بیشترین نیروی عمودی (N)
0/235	0/208	0/185	زمان وقوع بیشترین نیروی عمودی (S)
4/29×10 ⁵	4/25×10 ⁵	3/95×10 ⁵	نیروی عمودی در لحظه اتمام اسپین آپ (N)
0/118	0/118	0/121	زمان اتمام اسپین آپ (S)

نکته قابل توجه از جدول 2 اختلاف مقدار بیشترین نیروی عمودی و نیروی در زمان اتمام اسپین آپ میباشد. با کاهش مقدار نیروی عمودی برای محاسبه نیروی اصطکاک، گشتاور حاصل از این نیرو نیز کاهش مییابد. در محاسبه نیرو و زمان اسپین آپ، چرخ ارابه فرود اصلی سمت راست مورد بررسی قرار گرفته است.


همانطور که در نتایج ارائه شد، استفاده از شبیهسازی امکان محاسبه دقیق تر نیروها را بر اساس ویژگیهای سیستم دینامیکی ارابههای فرود ایجاد می کند. همچنین با استفاده از همین شبیهساز می توان اثر پارامترهای مختلف مانند موقعیت ارابههای فرود، میزان سختی مجموعه، میرایی هر یک از ارابهها و اثر وزن ارابه بر حداکثر نیروی وارد به سرنشینان را به سرعت و با کمترین هزینه محاسباتی، مورد بررسی قرار داد و با یافتن مناسب ترین حالت، قیود طراحی ارابه فرود را تعیین نمود.

5-اعتبار سنجي

جهت بررسی صحت خروجیهای شبیهسازی، نتایج تحلیل ارائه شده در مرجع [10] با روش حاضر، در شکل 17 مورد مقایسه قرار گرفته است. برای این منظور، مقادیر پارامترهای ورودی کد شبیهسازی، مطابق با مقادیر در نظر گرفته شده در مرجع [10] تنظیم شده است. سپس نمودارهای جابجاییهای

جدول 3 مقایسه نیروهای بدست آمده از شبیهسازی و روابط تحلیلی [14]

شبیه سازی	روابط تحليلي [14]	روش محاسبه نيرو
4/26×10 ⁵ N	4/96×10 ⁵ N	فرود سه چرخ
5/06×10 ⁵ N	5/29×10 ⁵ N	فرود دو چرخ
4/29×10 ⁵ N	4/96×10 ⁵ N	اسپین آپ

شکل 17 مقایسه پاسخ تحلیل حاضر با نتایج مرجع [10]، جابجایی مرکز جرم و زوایای پیچ و رول هواپیما

خطی و زاویهای هواپیما در حالت فرود دو چرخ، از روش جدید استخراج و در کنار نتایج این مرجع ترسیم میشود. اختلاف موجود در رفتار دینامیکی و مقادیر عددی به علت مدل کردن تایر به عنوان فنر و نیز در نظر گرفتن وزن ضربه گیر در شبیه سازی حاضر می باشد که در مرجع [10] در نظر گرفته نشده است. همچنین در مرجع [10] تنها جابجایی هواپیما و نیروی عمودی بدست آمده است و از آن جایی که نیروی عمودی حاصل جابجایی می باشد، با یکسان بودن رفتار جابجایی، نیروهای عمودی نیز رفتار یکسانی خواهند داشت.

6-نتيجه گيري

در این پژوهش با استفاده از معادلات حرکت و با فرض سیستم جرم و فنر و میراگر برای هر یک از ارابههای فرود یک هواپیما، پاسخ دینامیکی آن به ضربه فرود تحت سناریوهای فرود مختلف به دست آمد. در این تحلیل، جابجایی هواپیما به عنوان جسم صلب و هر کدام از ارابههای فرود و نیروهای عمودی اعمال شده هنگام فرود، علاوه بر محاسبه زمان اسپین آپ، بیشترین نیروی عمودی و بیشترین نیروی اسپین آپ به دست آمده است. نتایج حاصل نشان می دهد که مطابق انتظار، بیشترین نیروها در فرود تک چرخ ظاهر شدهاند. همچنین مقادیر به دست آمده از این روش با مقادیر تخمینی استفاده از یک تحلیل منطقی به جای استفاده از ضرایب اطمینان استاندارد، سبب کاهش نیروهای طراحی اعمالی به سازه می شود که کاهش وزن سازهای را دنبال خواهد داشت.

7-تقدير و تشكر

از شرکت دانش بنیان طراحی هواگرد سیگما برای حمایت از تحقیق حاضر تشکر میشود و نویسندگان مراتب قدردانی خود را از مدیریت این شرکت اعلام میدارند.

8- مراجع

- [1] E. staff, Landing gear topped list of aircraft systems involved in accidents during 35-year period, December 1994.
- [2] J. Roskam, *Airplane Design*, Part IV Layout design of landing gear, Design Analysis & Research, 1989.
- [3] Airbus A 320 Landing Gear Single Aisle Technical Training Manual, T1

- [11] P. D. Khapane, *Simulation of Landing Gear Dynamics and Brake-Gear Interaction*, PhD thesis, 2008.
- [12] E. KH. Heydari, A. Mozafari, Dynamic Analysos and Simulation of Landing Gear, Iranian Aircraft Structural Integrity Progeram Conference, Tehran, Iran, 2012. (In Persian)
- [13] K. Christofer, Dynamic Response Analysis of Generic Nose Landing Gear as Two DOF System, *International Journal of Scientific & Engineering Research*, Volume 4, Issue 6, June 2013.
- [14]D. Howe, *Aircraft loading and structural layout*, Professional Engineering Publishing, 2004.
- [15] Federal Aviation Regulations, Transport Category Airplanes, Part 2
- [16] S. V. Doren, *Analysis of the a 320 landing gear systems total report*, Hogeschool van Amesterdam, 2009.

- (CFM 56 / ME) (LvI 2&3)
- [4] G. Mikulowski, *Adaptive Aircraft shock absorbers*, Institute of Fundamental Technological Research, 2003.
- [5] J. Carter, the NASA Landing Gear Test Airplane, June 1995.
- [6] W. J. Moreland, The Story of Shimmy, *Journal of the Aeronautical Sciences*, Vol. 21, No. 12, 1954.
- [7] R. J. Black, Realistic Evaluation of Landing Gear Shimmy Stabilization by Test and Analysis, *SAE Paper* No. 760496, 1976.
- [8] H. C. Mechant, An Asymptotic Method for Predicting Amplitudes of Nonlinear Wheel Shimmy, *Journal of Aircraft*, Vol. 13, No. 3, pp. 155-159, 1978.
- [9] D. T. Grossman, F-15 Nose Landing Gear Shimmy, Taxi Test and Corrective Analysis, *SAE Paper* No. 801239, 1980.
- [10] R. Kolar, Approach to Dynamic Modeling of Aircraft Landing on Moving Ships, IMAC-XXI conference, 2003.