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Abstract—In this paper, the stability problem of nonlinear 

first order hyperbolic partial differential equations (PDE) 

systems is investigated. Based on Lyapunov stability theorem, 

the sufficient conditions to guarantee the stability of Takagi-

Sugeno (TS) fuzzy hyperbolic PDE model are achieved in terms 

of spatially varying linear matrix inequalities (SVLMI). To 

investigate the exponentially stabilization of nonlinear first 

order hyperbolic PDE systems, a fuzzy Lyapunov function is 

considered. Then, some new space varying slack matrices are 

introduced to conduct the stability analysis. The proposed 

stability conditions are more relaxed than the newly published 

one. Furthermore, the problem of applying some constraints on 

control input is studied through this paper. Hence, the 

performance of the controller is improved in the proposed 

approach. Finally, in order to evaluate the validity of the 

proposed approach, a practical application of nonisothermal 

plug flow reactor (PFR) is considered. 

 
Index Terms—First order hyperbolic PDE systems, TS fuzzy 

PDE model, Fuzzy Lyapunov function, Slack matrices, Space 

varying LMI.  

 

I. INTRODUCTION 

OST of the real world processes are described by 

nonlinear systems [1-2]. Takagi-Sugeno (TS) fuzzy 

model constructs a framework to introduce a nonlinear 

system in a convex combination of some local linear 

subsystems [3-4]. Synthesizing a controller for TS fuzzy 

model has been attracted lots of researchers’ attentions. 

However, most of the research topics have devoted to 

ordinary differential equations (ODE) [5-7]. Meanwhile, 

large amount of industrial processes are distributed in space 

as well as time such as chemical reactors, heat conduction, 

and fluid flow. Hence, their behaviors depend on more than 

one independent variable [8-10]. Generally, the mathematical 

models of these processes are described by partial differential 

equations (PDE) [8, 11]. Whereas PDE applications have 

infinite-dimensional characteristics, applying ODE methods 

to design a controller for PDE systems is more difficult. On 

the other hand, designing a distributed controller needs more 

efforts and energy [12-14].  

Due to the behavior of the spatially differential operator 

(SDO), the PDE systems are split into three well-known 

categories: hyperbolic, parabolic and elliptic [15]. In 

parabolic PDE systems, the Eigen-spectrums are usually 
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partitioned into two groups: a finite-dimensional slow 

component and an infinite-dimensional fast one [16]. One of 

the main features of hyperbolic PDE systems is their same (or 

nearly same) amount of energy [13]. Hence, their dynamical 

behavior can be exactly represented by utilizing an infinite 

number of modes. 

During recent years, significant number of research topics 

have devoted to analyzing the stability of nonlinear first order 

hyperbolic PDE systems. Ref. [13] investigates the problem 

of designing a distributed fuzzy controller. The TS fuzzy PDE 

model of nonlinear first order hyperbolic PDE systems is 

presented in [13] for the first time. Then, sufficient stability 

conditions are achieved in terms of spatially differential LMI 

conditions [13]. Ref. [14] designs a constraint distributed 𝐻∞ 

fuzzy controller. However, obtained space varying LMI-

based conditions depends on the delta-Dirac function [14]. 

Ref. [12] designs a relaxed distributed fuzzy controller which 

can guarantee the exponentially stability of the closed-loop 

system. In [10], the problem of designing a reliable static 

output feedback controller is investigated. Ref. [10] 

guarantees the performance of the system in the presence of 

exogenous disturbances. More recently, we design a 

distributed saturated polynomial fuzzy controller for a class 

of semi-linear hyperbolic PDE systems [8, 11]. According to 

the best of our knowledge, this paper tries the first attempt to 

design relaxed stability conditions with input constraints by 

introducing slack matrices. 

This paper investigates the problem of designing relaxed 

distributed fuzzy controller with input constraints for a class 

of nonlinear first order hyperbolic PDE systems. Initially, the 

nonlinear first order hyperbolic PDE system is accurately 

modeled in a TS fuzzy PDE structure by sector nonlinearity 

approach. Then, the fuzzy Lyapunov function is proposed to 

investigate the stability of the closed-loop system. Through 

the stability analysis, some new slack matrices are introduced 

and employed to increase the degrees of freedom in space 

varying LMI conditions. Furthermore, some input constraints 

on control input are proposed to improve the performance of 

the controller. The main key ideas of this paper can be 

enumerated as follows: 

1. Utilizing fuzzy Lyapunov function to obtain more relaxed 

stability conditions. 

2. Employing slack matrices results in increasing the 

degrees of freedom in space varying LMI conditions. 

3. Utilizing input energy constraints causes improving the 

performance of the controller. 
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4. Omitting some strict constraints on Lyapunov and 

convection matrices. 

Finally, in order to illustrate the merits and effectiveness of 

the proposed approach, a chemical tubular reactor called 

“nonisothermal PFR” is used.  

The rest of this paper is organized as follows: Section 2 

studies the preliminaries; the main results and contributions 

of this paper are presented in Section 3. Section 4 deals with 

simulation results and discussions; and finally, the paper will 

be closed by conclusions in Section 5. 

II. PRELIMINARIES 

Consider the following nonlinear first order hyperbolic PDE 

system: 
𝜕𝑦(𝑥, 𝑡)

𝜕𝑡
= 𝜃(𝑦(𝑥, 𝑡), 𝑥)

𝜕𝑦(𝑥, 𝑡)

𝜕𝑥
+ 𝑓(𝑦(𝑥, 𝑡), 𝑥)

+ 𝑔(𝑦(𝑥, 𝑡), 𝑥)𝑢(𝑥, 𝑡)  
(1) 

where 𝑦(𝑥, 𝑡) and 𝑢(𝑥, 𝑡) are state variables and control input, 

respectively. 𝜃(𝑦(𝑥, 𝑡), 𝑥) ∈ 𝑅2×2, 𝑓(𝑦(𝑥, 𝑡), 𝑥) ∈ 𝑅2 and 

𝑔(𝑦(𝑥, 𝑡), 𝑥) ∈ 𝑅2 are known smooth nonlinear functions.  

The nonlinear system (1) can be described with the 

following fuzzy IF-THEN rules: 

Plant Rule i:  

IF 𝜉1(𝑥, 𝑡) is 𝑀𝑖1 and … and 𝜉𝑙(𝑥, 𝑡) is 𝑀𝑖𝑙 , THEN: 
𝜕𝑦(𝑥, 𝑡)

𝜕𝑡
= 𝜃𝑖(𝑥)

𝜕𝑦(𝑥, 𝑡)

𝜕𝑥
+ 𝐴𝑖(𝑥)𝑦(𝑥, 𝑡)

+ 𝐵𝑖(𝑥)𝑢(𝑥, 𝑡) 
(2) 

where 𝑖 ∈ {1,⋯ , 𝑟} and 𝑟 denotes the number of fuzzy rules. 

𝜃𝑖(𝑥), 𝐴𝑖(𝑥), and 𝐵𝑖(𝑥) are known space varying matrices 

with appropriate dimensions. The overall TS fuzzy PDE 

model is achieved as follows: 

𝜕𝑦(𝑥, 𝑡)

𝜕𝑡
= ∑ℎ𝑖(𝜉) {𝜃𝑖(𝑥)

𝜕𝑦(𝑥, 𝑡)

𝜕𝑥

𝑟

𝑖=1

+ 𝐴𝑖(𝑥)𝑦(𝑥, 𝑡)

+ 𝐵𝑖(𝑥)𝑢(𝑥, 𝑡)} 

(3) 

where 

ℎ𝑖(𝜉) =
∏ 𝑀𝑖𝑗(𝜉𝑗(𝑥, 𝑡))
𝑟
𝑗=1

∑ ∏ 𝑀𝑖𝑗(𝜉𝑗(𝑥, 𝑡))
𝑟
𝑗=1

𝑟
𝑖=1

 (4) 

Based on the PDC concept, the fuzzy controller is defined 

as follows: 
Control Rule i:  

IF 𝜉1(𝑥, 𝑡) is 𝑀𝑖1 and … and 𝜉𝑙(𝑥, 𝑡) is 𝑀𝑖𝑙 , THEN: 

 𝑢(𝑥, 𝑡) = 𝐾𝑖(𝑥)𝑦(𝑥, 𝑡) (5) 

where 𝐾𝑖(𝑥) are control gain matrices which will be 

calculated during the design procedure. The overall fuzzy 

controller is given by 

𝑢(𝑥, 𝑡) =∑ℎ𝑖(𝜉)𝐾𝑖(𝑥)𝑦(𝑥, 𝑡)

𝑟

𝑖=1

  (6) 

Substituting (6) in (3), yields 

𝜕𝑦(𝑥, 𝑡)

𝜕𝑡
=∑∑ℎ𝑖(𝜉)

𝑟

𝑗=1

ℎ𝑗(𝜉) {𝜃𝑖(𝑥)
𝜕𝑦(𝑥, 𝑡)

𝜕𝑥

𝑟

𝑖=1

+ (𝐴𝑖(𝑥)𝑦(𝑥, 𝑡)

+ 𝐵𝑖(𝑥)𝐾𝑗(𝑥)) 𝑦(𝑥, 𝑡)} 

(7) 

In order to increase the degrees of freedom, we propose the 

following null terms: 

∑∑ℎ𝑖(𝜉)ℎ𝑗(𝜉)

𝑟

𝑗=1

{2 (𝑀1
𝑇(𝑥)𝑦(𝑥, 𝑡)

𝑟

𝑖=1

+𝑀2
𝑇(𝑥)

𝜕𝑦(𝑥, 𝑡)

𝜕𝑡

+ 𝑀3
𝑇(𝑥)

𝜕𝑦(𝑥, 𝑡)

𝜕𝑥
)

𝑇

(
𝜕𝑦(𝑥, 𝑡)

𝜕𝑡

− 𝜃𝑖(𝑥)
𝜕𝑦(𝑥, 𝑡)

𝜕𝑥
− [𝐴𝑖(𝑥)

+ 𝐵𝑖(𝑥)𝐾𝑗(𝑥)]𝑦(𝑥, 𝑡))} = 0 

(8) 

where matrices 𝑀1(𝑥), 𝑀2(𝑥), and 𝑀3(𝑥) are space varying 

slack matrices which will be calculated during the design 

procedure. In addition, based on the property of membership 

functions, the following null term will be introduced: 

∑
𝜕ℎ𝑖(𝜉)

𝜕𝑡

𝑟

𝑖=1

𝑦𝑇(𝑥, 𝑡)𝑀4(𝑥)𝑦(𝑥, 𝑡) = 0 (9) 

where 𝑀4(𝑥) is symmetric slack matrix. 

In order to investigate the stability of the closed-loop 

system, the following Lyapunov function is considered: 

𝑉(𝑡) = ∫ ∑ℎ𝑖(𝜉){𝑦
𝑇(𝑥, 𝑡)𝑃𝑖(𝑥)𝑦(𝑥, 𝑡)}

𝑟

𝑖=1

𝑑𝑥
𝑙2

𝑙1

 (10) 

where  𝑃𝑖(𝑥) are Lyapunov matrices. 

From now on, for brevity, we use 

𝑦, 𝑢, 𝜃𝑖 , 𝐴𝑖, 𝐵𝑖 , 𝐾𝑖 , 𝑀1, 𝑀2, 𝑀3, 𝑀4 and 𝑃𝑖  instead of 

𝑦(𝑥, 𝑡), 𝑢(𝑥, 𝑡), 𝜃𝑖(𝑥), 𝐴𝑖(𝑥), 𝐵𝑖(𝑥), 𝐾𝑖(𝑥),𝑀1(𝑥), 
𝑀2(𝑥),𝑀3(𝑥),𝑀4(𝑥), and 𝑃𝑖(𝑥), respectively. 

 

Lemma 1 [13]. If the Lyapunov function (10) satisfy 

𝑑𝑉(𝑡)

𝑑𝑡
+2𝜌𝑉(𝑡)≤0 (11) 

Then, the nonlinear system is exponentially stable with decay 

rate 𝜌.  

III. MAIN RESULTS 

In this section, the sufficient conditions to guarantee the 

exponentially stability of the TS fuzzy PDE model (7) will be 

presented in theorem 1. Furthermore, the sufficient conditions 

to guarantee the energy constraint on control input will be 

obtained in theorem 2. 

 

Theorem 1. Assume the time derivatives of membership 

functions are bounded (
𝜕ℎ𝑖

𝜕𝑡
≤ 𝜙𝑖), and 𝛼 is a pre-given scalar 

value. The TS fuzzy PDE model of nonlinear hyperbolic PDE 

system (1) is exponentially stable, if there exist space varying 

matrices 𝑆𝑗 , 𝑁1 and 𝑁2 and symmetric space varying matrices 

𝑇𝑖  and 𝑁3 such that 

{
 
 

 
 

𝑇𝑖 > 0    ∶  𝑖 = {1,⋯ , 𝑟}

𝑇𝑖 + 𝑁3 > 0   ∶  𝑖 = {1,⋯ , 𝑟}

Ξ𝑖𝑖 < 0    ∶  𝑖 = {1,⋯ , 𝑟}

1

𝑟 − 1
Ξ𝑖𝑖 +

1

2
(Ξ𝑖𝑗 + Ξ𝑗𝑖) < 0 

   ∶  1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑟

 (12) 

where 

Ξ𝑖𝑗 = [

Ξ11,𝑖𝑗 Ξ12,𝑖𝑗 −𝜃𝑖𝑁2
𝑇 − 𝑁1𝐴𝑖

𝑇 − 𝑆𝑗
𝑇𝐵𝑖

𝑇

∗ 𝛼(𝑁1 +∗) −𝜃𝑖𝑁2
𝑇 + 𝛼𝑁1

∗ ∗ −(𝜃𝑖𝑁2
𝑇 +∗)

]  
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Ξ11,𝑖𝑗 = 𝑇∅ + 2𝜌𝑇𝑖 − (𝐵𝑖𝑆𝑗 + 𝐴𝑖𝑁1
𝑇 +∗)  

𝑇∅ = ∑ ∅𝑘
𝑟
𝑘=1 (𝑇𝑘 + 𝑁3)  

Ξ12,𝑖𝑗 = 𝛼𝑇𝑖 + 𝛼𝑁1
𝑇 − 𝑆𝑗

𝑇𝐵𝑖
𝑇 − 𝑁1𝐴𝑖

𝑇  

are satisfied. Then the controller gain matrices are achieved 

as follows: 

𝐾𝑗 = 𝑆𝑗𝑁1
−𝑇 ,    𝑗 = 1, … 𝑟 (13) 

 

Proof. From (11), we have 
𝑑𝑉(𝑡)

𝑑𝑡
+ 2ρ𝑉(𝑡)

= ∫ ∑
𝜕ℎ𝑖
𝜕𝑡

{𝑦𝑇𝑃𝑖𝑦}

𝑟

𝑖=1

𝑑𝑥
𝑙2

𝑙1

+∫ ∑ℎ𝑖 {(
𝜕𝑦

𝜕𝑡
)
𝑇

𝑃𝑖𝑦 + 𝑦
𝑇𝑃𝑖 (

𝜕𝑦

𝜕𝑡
)}

𝑟

𝑖=1

𝑑𝑥
𝑙2

𝑙1

+∫ ∑ℎ𝑖{𝑦
𝑇2𝜌𝑃𝑖𝑦}

𝑟

𝑖=1

𝑑𝑥
𝑙2

𝑙1

= ∫ ∑ℎ𝑖 {𝑦
𝑇 {∑

𝜕ℎ𝑘
𝜕𝑡

𝑟

𝑘=1

𝑃𝑘} 𝑦 + (
𝜕𝑦

𝜕𝑡
)
𝑇

𝑃𝑖𝑦

𝑟

𝑖=1

𝑙2

𝑙1

+ 𝑦𝑇𝑃𝑖 (
𝜕𝑦

𝜕𝑡
) + 𝑦𝑇2𝜌𝑃𝑖𝑦} 𝑑𝑥 < 0 

(14) 

By utilizing the null terms (8) and (9), inequality (14) can be 

rewritten as follows: 

𝑑𝑉(𝑡)

𝑑𝑡
+ 2ρ𝑉(𝑡) ≤ ∫ ∑∑ℎ𝑖ℎ𝑗

𝑟

𝑗=1

{2 (𝑀1
𝑇𝑦

𝑟

𝑖=1

𝑙2

𝑙1

+𝑀2
𝑇
𝜕𝑦

𝜕𝑡
+ 𝑀3

𝑇
𝜕𝑦

𝜕𝑥
)
𝑇

(
𝜕𝑦

𝜕𝑡

− 𝜃𝑖
𝜕𝑦

𝜕𝑥
− [𝐴𝑖 + 𝐵𝑖𝐾𝑗]𝑦)

+ 𝑦𝑇 {∑
𝜕ℎ𝑘
𝜕𝑡

𝑟

𝑘=1

(𝑃𝑘 +𝑀4)} 𝑦

+ (
𝜕𝑦

𝜕𝑡
)
𝑇

𝑃𝑖𝑦 + 𝑦
𝑇𝑃𝑖 (

𝜕𝑦

𝜕𝑡
)

+ 𝑦𝑇2𝜌𝑃𝑖𝑦} 𝑑𝑥 < 0 

(15) 

Assume that the time derivatives of membership functions are 

bounded as 
𝜕ℎ𝑖

𝜕𝑡
≤ 𝜙𝑖. If 𝑃𝑘(𝑥) + 𝑀4 > 0, then, we have 

𝑑𝑉(𝑡)

𝑑𝑡
+ 2𝜌𝑉(𝑡) ≤ ∫ ∑∑ℎ𝑖ℎ𝑗

𝑟

𝑗=1

{2 (𝑀1
𝑇𝑦

𝑟

𝑖=1

𝑙2

𝑙1

+𝑀2
𝑇
𝜕𝑦

𝜕𝑡
+ 𝑀3

𝑇
𝜕𝑦

𝜕𝑥
)
𝑇

(
𝜕𝑦

𝜕𝑡

− 𝜃𝑖
𝜕𝑦

𝜕𝑥
− [𝐴𝑖 + 𝐵𝑖𝐾𝑗]𝑦)

+ 𝑦𝑇 {∑𝜙𝑘

𝑟

𝑘=1

(𝑃𝑘 +𝑀4)} 𝑦

+ (
𝜕𝑦

𝜕𝑡
)
𝑇

𝑃𝑖𝑦 + 𝑦
𝑇𝑃𝑖 (

𝜕𝑦

𝜕𝑡
)

+ 𝑦𝑇2𝜌𝑃𝑖𝑦} 𝑑𝑥 

(16) 

Based on congruence lemma, one has 

∫ ∑∑ℎ𝑖ℎ𝑗

𝑟

𝑗=1

[
 
 
 
 
𝑦
𝜕𝑦

𝜕𝑡
𝜕𝑦

𝜕𝑥]
 
 
 
 
𝑇

𝑟

𝑖=1

Ξ̂𝑖𝑗

[
 
 
 
 
𝑦
𝜕𝑦

𝜕𝑡
𝜕𝑦

𝜕𝑥]
 
 
 
 

𝑑𝑥
𝑙2

𝑙1

< 0 (17) 

where 

Ξ̂𝑖𝑗 = [

Ξ̂11,𝑖𝑗 Ξ̂12,𝑖𝑗 −𝑀1𝜃𝑖 − 𝐴𝑖
𝑇𝑀3

𝑇 − 𝐾𝑗
𝑇𝐵𝑖

𝑇𝑀3
𝑇

∗ 𝑀2 +∗ −𝑀2𝜃𝑖 +𝑀3
𝑇

∗ ∗ −(𝑀3𝜃𝑖 +∗)

] 

Ξ̂11,𝑖𝑗 = 𝑃∅ + 2𝜌𝑃𝑖 − (𝑀1𝐵𝑖𝐾𝑗 +𝑀1𝐴𝑖 +∗)  

𝑃∅ = ∑ ∅𝑘
𝑟
𝑘=1 (𝑃𝑘 +𝑀4)  

Ξ̂12,𝑖𝑗 = 𝑃𝑖 +𝑀1 − 𝐾𝑗
𝑇𝐵𝑖

𝑇𝑀2
𝑇 − 𝐴𝑖

𝑇𝑀2
𝑇  

Inequality (17) is equivalent to Ξ̂𝑖𝑗 < 0. Pre- and post-

multiplying both sides of Ξ̂𝑖𝑗 by 

[

𝑀1
−1 0 0

∗ 𝑀2
−1 0

∗ ∗ 𝑀3
−1

] , one has 

 

[

Ξ11,𝑖𝑗 Ξ12,𝑖𝑗 Ξ13,𝑖𝑗

∗ 𝑀2
−𝑇 +∗ −𝜃𝑖𝑀3

−𝑇 +𝑀2
−1

∗ ∗ −(𝜃𝑖𝑀3
−𝑇 +∗)

] < 0 (18) 

where 

Ξ11,𝑖𝑗 = 𝑀1
−1𝑃∅𝑀1

−𝑇 + 2𝜌𝑀1
−1𝑃𝑖𝑀1

−𝑇 − (𝐵𝑖𝐾𝑗𝑀1
−𝑇 +

𝐴𝑖𝑀1
−𝑇 +∗)  

Ξ12,𝑖𝑗 = 𝑀1
−1𝑃𝑖𝑀2

−𝑇 +𝑀2
−𝑇 −𝑀1

−1𝐾𝑗
𝑇𝐵𝑖

𝑇 −𝑀1
−1𝐴𝑖

𝑇  

Ξ13,𝑖𝑗 = −𝜃𝑖𝑀3
−𝑇 −𝑀1

−1𝐴𝑖
𝑇 −𝑀1

−1𝐾𝑗
𝑇𝐵𝑖

𝑇   

Defining the following change of variables: 

𝑁1 = 𝑀1
−1  

𝛼𝑁1 = 𝑀2
−1  

𝑁2 = 𝑀3
−1  

𝑁3 = 𝑀1
−1𝑀4𝑀1

−𝑇  

𝑇∅ = 𝑀1
−1𝑃∅𝑀1

−𝑇  

𝑆𝑗 = 𝐾𝑗𝑀1
−𝑇  

𝑇𝑖 = 𝑀1
−1𝑃𝑖𝑀1

−𝑇  

(19) 

The proof will be completed.                            

 

Theorem 2. Assume the Lyapunov function (10) is bounded 

(𝑉(𝑡) = ∫ 𝑦𝑇(∑ ℎ𝑖𝑃𝑖
𝑟
𝑖=1 )𝑦𝑑𝑥

𝑧2
𝑧1

< 𝜂). The constraint ‖𝑢‖2
2 <

𝑢𝑚𝑎𝑥 is guaranteed if there exist positive definite symmetric 

matrices 𝑇𝑖  and any matrices 𝑆𝑖 such that 

[
𝑇𝑖 𝑆𝑖

𝑇

𝑆𝑖 𝑢𝑚𝑎𝑥𝜂
−1] > 0 (20) 

[
−(𝑙2 − 𝑙1)

−1𝜂 𝑦0
𝑇

𝑦0 −𝑃𝑖
] < 0 (21) 

for all 𝑖 = 1,2,⋯ , 𝑟. 

 

Proof. Based on the definition of the norm 2 [13], we have 

‖𝑢‖2
2 = ∫ 𝑦𝑇 (∑ℎ𝑖𝐾𝑖

𝑟

𝑖=1

)

𝑇

(∑ℎ𝑖𝐾𝑖

𝑟

𝑖=1

)𝑦
𝑙2

𝑙1

𝑑𝑥

< 𝑢𝑚𝑎𝑥 

(22) 

Using 0 < ‖𝑢‖2
2 < 𝜂−1𝑉(𝑡)𝑢𝑚𝑎𝑥 < 𝑢𝑚𝑎𝑥  and (22) result in 

∫ 𝑦𝑇 [(∑ℎ𝑖𝐾𝑖

𝑟

𝑖=1

)

𝑇

(∑ℎ𝑖𝐾𝑖

𝑟

𝑖=1

)
𝑙2

𝑙1

− 𝑢𝑚𝑎𝑥𝜂
−1∑ℎ𝑖𝑃𝑖

𝑟

𝑖=1

] 𝑦 𝑑𝑥 < 0 

(23) 
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whereas 𝑢𝑚𝑎𝑥𝜂
−1 is positive definite scalar, pre- and post-

multiplying both sides of equation (23) by 𝑀1
−1√𝑢𝑚𝑎𝑥

−1 𝜂, we 

have 

∑ℎ𝑖𝑇𝑖

𝑟

𝑖=1

+ (∑ℎ𝑖𝑆𝑖

𝑟

𝑖=1

)

𝑇

𝑢𝑚𝑎𝑥
−1 𝜂 (∑ℎ𝑖𝑆𝑖

𝑟

𝑖=1

) > 0 (24) 

Using Schur complement, one has 

∑ℎ𝑖

𝑟

𝑖=1

[
𝑇𝑖 𝑆𝑖

𝑇

𝑆𝑖 𝑢𝑚𝑎𝑥𝜂
−1] > 0 (25) 

Hence, if the LMI conditions (20) are satisfied, then (25) will 

be guaranteed. Additionally, in order to guarantee 𝑉(𝑡) =

∫ 𝑦𝑇(∑ ℎ𝑖𝑃𝑖
𝑟
𝑖=1 )𝑦𝑑𝑥

𝑧2
𝑧1

< 𝜂 which is used in inequality (23), 

we have 

𝑉(𝑡) = ∫ 𝑦𝑇 (∑ℎ𝑖𝑃𝑖

𝑟

𝑖=1

)𝑦𝑑𝑥
𝑧2

𝑧1

≤ 𝑉(0)

= ∫ 𝑦0
𝑇 (∑ℎ𝑖𝑃𝑖

𝑟

𝑖=1

)𝑦0𝑑𝑥
𝑧2

𝑧1

< ∫ (𝑙2 − 𝑙1)
−1𝜂𝑑𝑥

l2

l1

 

(26) 

(26) is equivalent to 

𝑦0
𝑇 (∑ℎ𝑖𝑃𝑖

𝑟

𝑖=1

)𝑦0 − (𝑙2 − 𝑙1)
−1𝜂 < 0 (27) 

Using Schur complement, we have 

∑ℎ𝑖 [
−(𝑙2 − 𝑙1)

−1𝜂 𝑦0
𝑇

𝑦0 −𝑃𝑖
]

𝑟

𝑖=1

< 0 (28) 

The equation (21) is directly concluded from (28). The proof 

is completed.                               ∎ 

IV. SIMULATION RESULTS AND DISCUSSIONS 

In this section, in order to illustrate the effectiveness and 

merits of the proposed approach, the nonisothermal PFR 

system is considered. In PFR tubular reactor, the reaction 

𝐴 → �̃�𝐵 takes places. The PFR application can be modeled in 

the nonlinear first order hyperbolic PDE structure (1) with the 

following elements [8, 11]: 

𝜃(𝑦(𝑥, 𝑡), 𝑥) = −
𝑣

𝐿
[
1 0
0 1

] 

𝑓(𝑦(𝑥, 𝑡), 𝑥) = [
Θ1𝑓0 − 𝑏y1
Θ2𝑓0

] 

𝑔(𝑦(𝑥, 𝑡), 𝑥) = [
𝑏
0
] 

𝑓0 = (1 − Ξ2𝑒)𝑍2 − y2Z1 

𝑍1 = exp (
βy1
1 + y1

) 

𝑍2 = 𝑍1 − 1 

(29) 

where  

Ξ2𝑒(𝑥) = 1 − exp (−
Θ2𝐿

𝑣
𝑥) 

where 𝛽 =
𝐸

𝑅𝑇𝑖𝑛
, Θ1 = 𝛿Θ2, and Θ2 = 𝑘0 exp(−𝛽). The 

numerical values of nonisothermal PFR parameters are 

presented in Table. I. 

The overal TS fuzzy PDE  model of PFR system is obtained 

based on sector nonlinearity approach [13, 17]. The PFR 

system is exactly represented by the TS fuzzy PDE model (3) 

by defining the following matrices [13]: 

 

 

 
TABLE I 

THE NUMERICAL VALUES OF PFR SYSTEM 

Parameters Numerical values 

𝑣 0.025 m/s 

𝐿 1 m 

𝐸 11250 cal/mol 

𝑘0 06 s-1 

𝑏 = 4ℎ/𝜌𝑝𝐶𝑝𝑑 0.2 s-1 

𝐶𝐴,𝑖𝑛  0.02 mol/L 

𝑅 1.986 cal/(mol.K) 

𝑇𝑖𝑛 340 K 

𝛿 0.25 

 

 

𝜃𝑖 = 𝜃 = 𝑑𝑖𝑎𝑔 {−
𝑣

𝐿
, −

𝑣

𝐿
} , ∀𝑖 ∈ {1,2,⋯ , 𝑟}  

𝐵𝑖 = 𝐵 = [
𝑏
0
],           ∀𝑖 ∈ {1,2,⋯ , 𝑟}  

𝐴1 = [
Θ1(1 − Ξ2𝑒(𝑥))𝑐1 − 𝑏 −Θ1𝑎1

Θ2(1 − Ξ2𝑒(𝑥))𝑐1 −Θ2𝑎1
]  

𝐴2 = [
Θ1(1 − Ξ2𝑒(𝑥))𝑐2 − 𝑏 −Θ1𝑎1

Θ2(1 − Ξ2𝑒(𝑥))𝑐2 −Θ2𝑎1
]  

𝐴3 = [
Θ1(1 − Ξ2𝑒(𝑥))𝑐1 − 𝑏 −Θ1𝑎2

Θ2(1 − Ξ2𝑒(𝑥))𝑐1 −Θ2𝑎2
]  

𝐴4 = [
Θ1(1 − Ξ2𝑒(𝑥))𝑐2 − 𝑏 −Θ1𝑎2

Θ2(1 − Ξ2𝑒(𝑥))𝑐2 −Θ2𝑎2
]  

(30) 

Also, the membership functions are defined as follows: 

ℎ1 = 𝑀11𝑀12   

ℎ2 = 𝑀11𝑀22  

ℎ3 = 𝑀21𝑀12  

ℎ4 = 𝑀21𝑀22  

(31) 

where 

𝑀11 =
𝑍1−𝛼2

𝛼1−𝛼2
, 

𝑀21 = 1 −𝑀11, 

𝑀12 = {

𝑍2−𝑐2𝑦1

𝑦1(𝑐1−𝑐2)
, 𝑦1 ≠ 0

𝛽−𝑐2

𝑐1−𝑐2
, 𝑦1 = 0

, 

𝑀22 = 1 −𝑀12. 

 

A.  Feasibility region 

The obtained stability conditions in Theorem 1 are exploited 

to investigate the stabilization region of the TS fuzzy 

hyperbolic PDE model. To compare the results of the 

proposed approach and [13], we assume 𝜌 = 2000. 

Furthermore, consider 0.018 ≤ 𝛽2 ≤ 0.034 and 0 ≤ 𝑣 ≤
0.16 at the interval of 0.01 and 0.02, respectively. The 

feasibility region is presented in Fig. 1. The results illustrate 

that, because of utilizing the slack matrices with more degree 

of freedom in LMI-based conditions, the proposed approach 

is less conservative than [13]. 

 

B.  Design controller with input constraint 

In this section, we assume ρ=0.005, v=0.025, and 

β_2=0.0581. Then, the proposed conditions in theorems 1 and 

2 are numerically solved by utilizing Yalmip toolbox in 

MATLAB. Hence, the feasible solutions are obtained and 
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Fig.1. Comparing the feasibility region between the proposed approach 

(+,o) and [13] (+). 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 2. The first array of control gain matrices 𝐾𝑖 = [𝐾𝑖
1 𝐾𝑖

2]𝑇. (a) 𝐾1
1 (b) 

𝐾2
1 (c) 𝐾3

1 (d) 𝐾4
1. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig.3. The second array of control gain matrices 𝐾𝑖 = [𝐾𝑖
1 𝐾𝑖

2]𝑇. (a) 𝐾1
2 

(b) 𝐾2
2 (c) 𝐾3

2 (d) 𝐾4
2. 

 

the control gain matrices are achieved. Figures 2 and 3 

illustrate the control gain matrices. The first and second 

arrays of control gain matrices are illustrated in Figs. 2 and 3, 

respectively. Fig. 4 illustrates the behavior of the controlled 

state variables. Furthermore, the evolution of signal control is 

depicted in Fig. 5 (a). Fig. 5 (b) indicates the evolution of 

controller signal based on the method presented in [13]. 

From practical points of view, one of the important issues to 

deal with designing a controller for nonisothermal PFR 

application is the amplitude of the control signal. The 

amplitude of the control signal must be applicable. As it is 

observed in Fig. 5, the amplitude of the control signal for the 

proposed approach (Fig. 5 (a)) is more suitable than [13] 
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(a) 

 
(b) 

Fig.4. Evolutions of state variables: (a) Reactant concentration, (b) Reactant 
temperature. 

 

which is illustrated in Fig. 5 (b). Furthermore, it is more 

applicable than [10]. Hence, utilizing the control constraint 

on the control input improve the performance of the control 

signal than [10, 13]. 

V. CONCLUSIONS 

This paper investigated the stabilization problem of 

nonlinear first order hyperbolic PDE systems. From this 

paper, we can conclude that, utilizing the fuzzy Lyapunov 

function and introducing new slack matrices resulted in 

increasing the degrees of freedom in space varying LMI 

conditions. Hence, the proposed approach decreases the 

conservativeness in control synthesis and stability analysis of 

TS fuzzy PDE models. Furthermore, employing constraints 

on the control input improve the performance of the 

controller. In addition, some strict conditions on Lyapunov 

and convection matrices are omitted by the proposed 

approach. Finally, the PFR application is used to investigate 

the applicability of the proposed approach. The simulation 

results clearly indicate the performance and applicability of 

the controller than timely references. Additionally, the results 

show that, the stabilization conditions are more relaxed than 

newly published works. 

 

 

 

 
(a) 

 
(b)  

Fig.5. Evolutions of jacket temperature. (a) proposed approach, (b) Ref. [13]. 
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