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1 

Abstract—In this paper, tracking control synthesis problem 

for nonlinear polynomial discrete-time systems are studied. 

Proposed controller drives the plant such that the state vector of 

the plant follows those of a stable reference model. The objective 

is to design a controller such that the energy gains from the 

exogenous signals that are the reference signal and the state 

vector of the reference model, to the tracking error to be less or 

equal to prescribe thresholds. The main difficulty in the problem 

of designing tracking nonlinear discrete-time control law for the 

polynomial discrete time systems is that in general this problem 

may not be formulated as a convex problem. With proper 

selection of Lyapunov function and based on Lyapunov theory 

and by using sum of square approach, sufficient conditions for 

existence of controller are presented in terms of a feasibility SOS 

programming problem that can be solved using numerical solvers 

such as SOSTOOLS. Finally, the performance of proposed 

approach will be shown using the simulation of several examples.  

 
Index Terms— Nonlinear control, polynomial discrete-time 

systems, tracking control, sum of square (SOS)  

 

I. INTRODUCTION 

n the recent decade stability analysis and controller 

synthesis problems for a class of nonlinear systems known 

as polynomial systems have mentioned by many researchers. 

In the aforementioned class of systems, equations describing 

the dynamics of system are polynomial functions of its states. 

The development of sum of square (SOS) methods in the 

analysis and synthesis of nonlinear control systems is one of 

the main reasons for attention to the polynomial systems [1-3]. 

Giving implicit conditions based on positive polynomial 

formulation that converts the controller synthesis problem to a 

feasibility SOS programming problem and can be solved with 

some third party toolboxes such as SOSTOOLS [4], YALMIP 

[5], GloptiPoly [6] is one of the methods using SOS for 

system analysis and synthesis 

Studies on polynomial systems are seen in both categories 

of continuous-time and discrete-time systems. In each of 
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categories, controller syntheses for stabilization and tracking 

control problems have been addressed by researchers. There 

are many researches in the literature that have dealt with the 

stabilization of continuous-time polynomial systems. For 

example see [7-18]. In comparison with the studies on the 

stabilization of continuous time polynomial systems, fewer 

researches found in the literature that have addressed the 

tracking problem for this class of systems. For example see 

[19]. 

On the other hand, some researchers have addressed 

controller synthesis for discrete-time polynomial systems [20-

24]. As mentioned earlier, giving conditions for controller 

synthesis as SOS constraints is the main challenge that the 

researchers are faced. As one of the first research, it can be 

pointed to [20]. In [20] authors have chosen a special form for 

system and Lyapunov function. With that selection, the 

conditions for controller synthesis are obtained as SOS 

constraints. In [21] by selecting the system in a general form, 

the synthesis of stabilizing polynomial 𝐻∞ state feedback 

controller has addressed. The authors have selected Lyapunov 

function similar to quadratic form with a state dependent 

Lyapunov matrix. It has resulted the emergence of non-convex 

terms in conditions presented for controller synthesis. To fix 

it, with assumption on the size of appeared non-convex terms, 

controller gains have selected so that the non-convex terms 

tend toward zero. Some authors tried to avoid from non-

convex terms by selecting specific structures for controller. 

For example in [22] authors have selected a controller with 

integrator. In that paper the controller synthesis conditions for 

a class of system with norm bounded uncertainty are obtained. 

Based on the method presented in [22] the author in [23] and 

[24] have been designed nonlinear 𝐻∞ control with integral 

structure for polynomial discrete-time systems. 

In this paper, the tracking control synthesis problem for 

discrete-time polynomial system will be addressed. The 

sufficient conditions for controller synthesis are given in terms 

of polynomial matrix inequalities, which are formulated as 

SOS constraints in a feasibility semi-definite programming 

problem. The merit of the proposed method will be shown 

using the simulation of some examples using SOSTOOLS.  

The paper is organized as follows: Section 2 will introduce 

some preliminaries and discrete-time polynomial model for 

system and controller. In Section 3, main results for the 

synthesis of discrete-time polynomial feedback controller will 
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be introduced. The simulations of several examples are given 

in Section 4 to show the merits of the proposed approach. 

Finally, the conclusions of the paper are presented in Section 

5. 

II. NOTATIONS AND PRELIMINARIES 

A. Notations 

Let ℝ denotes the set of real number and ℝ𝑛 denotes the set 

of real space with dimension 𝑛. A matrix 𝑀 ≺ 0 means that 

the matrix 𝑀 is a negative definite matrix. 𝑥(𝑘) ∈ ℝ𝑛 denotes 

the state vector of a dynamical system where 𝑘 is the discrete-

time index .𝑥̃ = [𝑥𝑘1
, … , 𝑥𝑘𝑞

]
𝑇

denotes a vector containing 

those state of system that the input does not affect on them 

directly. In other words the entire elements of corresponding 

rows in the input matrix of the system are zeros. The notation 

diag(𝐴1, … , 𝐴𝑛) denotes a diagonal block matrix. 

B. Preliminaries  

Definition 2.1 [1]: A multivariate polynomial 𝑓(𝑥), 𝑥 ∈
ℝ𝑛, is a sum of squares if there exist polynomials 𝑓𝑖(𝑥), 𝑖 =
1, . . . , 𝑚 such that  

𝑓(𝑥) = ∑𝑓𝑖
2(𝑥)

𝑚

𝑖=1

 (1) 

If a decomposition for𝑓(𝑥) in the form of (1) can be 

obtained, it is clear that  𝑓(𝑥) ≥ 0 for all 𝑥 ∈ ℝ𝑛.  

Proposition 2.1 [1]: Let 𝑓(𝑥)be a polynomial in 𝑥 ∈ ℝ𝑛 of 

degree 2𝑑. Let 𝑥̂(𝑥)be a column vector whose entries are all 

monomials in 𝑥 with degree smaller than 𝑑. A monomial in 

𝑥(𝑡) is a function of the form 𝑥1
𝛼1𝑥2

𝛼2 …𝑥𝑛
𝛼𝑛, where 

𝛼1, 𝛼2, … , 𝛼𝑛, are nonnegative integers and 𝑑 = 𝛼1 + ⋯+ 𝛼𝑛. 

Therefore, 𝑓(𝑥) is said to be an SOS if and only if there exists 

a positive semi-definite matrix 𝑄 such that: 

𝑓(𝑥) = 𝑥̂(𝑥)𝑇𝑄𝑥̂(𝑥) (2) 

Proposition 2.2 [7]: Let 𝐹(𝑥) ≽ 0 be an 𝑁 × 𝑁 symmetric 

polynomial matrix of degree 2𝑑 in 𝑥 ∈ ℝn. Furthermore, let 

𝑥̂(𝑥) denotes a column vector whose entries are all monomials 

in 𝑥(𝑡) with degree no greater than𝑑, and consider the 

following conditions: 

1- 𝐹(𝑥) ≽ 0 for all 𝑥 ∈ ℝn 

2- 𝑣𝑇𝐹(𝑥)𝜈 is an SOS, where 𝜈 ∈ ℝn 

3-There exists a positive semi-definite matrix 𝑄 such that:  

  𝑣𝑇𝐹(𝑥)𝜈 = (𝜈⨂𝑥̂(𝑥))𝑇𝑄(𝜈⨂𝑥̂(𝑥)) where ⨂ denotes the 

Kronecker product. 

Then 1 ⇐ 2, 2 ⟺ 3. 

Proposition 2.3(Congruence transformation): Consider 𝑀 is 

a square matrix and 𝑇 is a nonsingular one. Hence 𝑀 ≺ 0 if 

and only if  𝑇∗𝑀𝑇 ≺ 0; where ∗ denotes complex conjugate 

transpose of 𝑇. 

Lemma 2.1 [25]. (Schur Complement): Let 𝐴(𝑥) = 𝐴𝑇(𝑥) 

and 𝐶(𝑥) = 𝐶𝑇(𝑥) and 𝐷(𝑥) depend affinely on 𝑥. Then  

[
𝐴(𝑥) 𝐷(𝑥)

𝐷𝑇(𝑥) 𝐶(𝑥)
] ≻ 0 

Is equivalent to  

𝐶(𝑥) ≻ 0,     𝐴(𝑥) − 𝐷(𝑥)𝐶−1(𝑥)𝐷𝑇(𝑥) ≻ 0 

or 

𝐴(𝑥) ≻ 0,     𝐶(𝑥) − 𝐷𝑇(𝑥)𝐴−1(𝑥)𝐷(𝑥) ≻ 0 

Lemma 2.2: The following statement holds: 

[𝐴 − 𝐵 𝐷−1𝐵𝑇 𝐿
𝐿𝑇 𝑀

] ≻ 0 ⇔ [
𝐴 𝐵 𝐿
𝐵𝑇 𝐷 0
𝐿𝑇 0 𝑀

] ≻ 0 

Proof: Start from the left hand side and apply Schur 

complement on it; that  results 𝐴 − 𝐵𝐷−1𝐵𝑇 − 𝐿𝑀−1𝐿𝑇 ≻

0 → 𝐴 − [𝐵 𝐿] [𝐷
−1 0
0 𝑀−1] [𝐵

𝑇

𝐿𝑇 ] ≻ 0. By appling Schur 

complement on the last inequality it can conclude the other 

side.□ 

C. Discrete-time polynomial plant 

Consider the plant as 

 (3) 
𝑥(𝑘 + 1) = 𝐴(𝑥(𝑘))𝑥(𝑘) + 𝐵(𝑥(𝑘))𝑢(𝑘) 

𝑦(𝑘) = 𝐶𝑥(𝑘) 

where 𝐴(𝑥(𝑘)) ∈ ℝ𝑛×𝑛, 𝐵(𝑥(𝑘)) ∈ ℝ𝑛×𝑚 are the system and 

input matrices, respectively. 𝑢(𝑘) ∈ ℝ𝑚 is the input vector, 

𝑦(𝑘) ∈ ℝ𝑙 is the output vector, 𝑥(𝑘) ∈ ℝ𝑛 is the system state 

vector and 𝐶 ∈ ℝ𝑙×𝑛 is a constant matrix. 

To facilitate the stability analysis, like that is done in [7], 

and to avoid appearing non-convex conditions, it is assumed 

that the state vector of system can be partitioned as 

𝑥(𝑘) = [𝜉(𝑘) 𝑥̃(𝑘)]𝑇 where 𝑥̃(𝑘) denotes the states that 

does not affect directly from input signal. Therefore the 

subsystem that does not affected directly from input is shown 

as  

(4) 𝑥̃(𝑘 + 1) = 𝐴̃(𝑥(𝑘))𝑥(𝑘) 

where 𝐴̃(𝑥(𝑘)) ∈ ℝ𝑞×𝑛. 

 

D. Reference model 

Consider a stable reference model as 

(5) 
𝑥𝑟(𝑘 + 1) = 𝐴𝑟𝑥𝑟(𝑘) + 𝐵𝑟𝑟(𝑘) 

𝑦𝑟(𝑘) = 𝐶𝑥𝑟(𝑘) 

where 𝑥𝑟(𝑘) ∈ ℝ𝑛 is the state vector, 𝐴𝑟 ∈ ℝ𝑛×𝑛 and  

𝐵𝑟 ∈ ℝ𝑛×𝑚 are the system and input matrices of the reference 

model, respectively. 𝑟(𝑘) ∈ ℝ𝑚 is the desired input vector and 

𝑦𝑟(𝑘) ∈ ℝ𝑙 is the output vector of the reference model. 

 

E. Discrete-time polynomial controller 

Consider the feedback polynomial controller as: 

(6) 𝑢(𝑘) = 𝐹(ℎ)𝑒𝑦(𝑘) + 𝐺(ℎ)𝑦𝑟(𝑘) 

where 𝐹(ℎ) ∈ ℝ𝑚×𝑙 and 𝐺(ℎ) ∈ ℝ𝑚×𝑙 are controller gains. ℎ 

is a vector as ℎ = [𝑦𝑇(𝑘) 𝑦𝑟
𝑇(𝑘)]𝑇 . In other words, the 

controller gains depend on the system and reference model 

outputs. 

III. CONTROLLER DESIGN 

Consider the discrete-time system  (3). Substituting control 

law (6) in to  (3) results that the closed-loop system can be 

represented as:  

(7) 

𝑥(𝑘 + 1) = 𝐴(𝑥(𝑘))𝑥(𝑘)

+ 𝐵(𝑥(𝑘)) (𝐹(ℎ)𝑒𝑦(𝑘)

+ 𝐺(ℎ)𝑦𝑟(𝑘)) 



DADASHI ARANI et al TRACKING CONTROL DESIGN FOR DISCRETE-TIME POLYNOMIAL SYSTEMS 

  

3 

The objective is to find controller gains 𝐹(ℎ) and 𝐺(ℎ) such 

that the closed-loop system isstable and the output vector of 

the closed-loop systems followsthe output vector of the 

reference model.  

In the following theorem, we present necessary conditions 

for the existence of the tracking control law.  

Theorem1: The feedback polynomial controller (6) drives 

the states of the system  (3) to follow those of the stable 

reference model (5) if there exists pre-defined scalar 

polynomial functions 𝜀1(𝑥) > 0 and 𝜀2(𝑥) ≥ 0, decision 

polynomial matrix 𝑋(𝑥̃) = 𝑋(𝑥̃)𝑇 ∈ ℝ𝑛×𝑛 and decision 

polynomial matrices 𝑀(ℎ) ∈ ℝ𝑚×𝑛 and 𝐺(ℎ)  ∈ ℝ𝑚×𝑙 ,  such 

that: 

(8) 
𝑣𝑇(𝑋(𝑥̃) − 𝜀1(𝑥))𝑣          is  SOS 

−𝜌̅𝑇(Ω(𝑥) + 𝜀2(𝑥))𝜌̅       is SOS 

where 
Ω(𝑥)

=

[
 
 
 
 

𝑋 𝑋 0 0 ∗
𝑋 𝑄−1 0 0 ∗

0 0 𝜎1
2𝐼 0 ∗

0 0 0 𝜎2
2𝐼 ∗

𝐴(𝑥)𝑋 + 𝐵(𝑥)𝑀(𝑥) 0 ((𝐴(𝑥) − 𝐴𝑟) + 𝐵(𝑥)𝐺(ℎ)𝐶) −𝐵𝑟 𝑋+]
 
 
 
 

 

 

and 𝜌̅ ∈ ℝ4𝑛+𝑚 and 𝑣 ∈ ℝ𝑛are arbitrary vectors independent 

of 𝑥 and 𝑥̃, 𝜎1 and 𝜎2 are pre-defined scalar and 

𝑋+ = 𝑋(𝐴̃(𝑥)𝑥). 

Proof: Consider the state tracking error as  

 (9) 𝑒(𝑘) = 𝑥(𝑘) − 𝑥𝑟(𝑘) 
It is clear that the output tracking error of the closed-loop 

system can be written as 𝑒𝑦(𝑘) = 𝐶𝑒(𝑘). Substituting 𝑥(𝑘) 

from  (9) in (7) and using from the fact that 𝑒𝑦(𝑘) = 𝐶𝑒(𝑘) 

we have 

(10) 
𝑥(𝑘 + 1) = (𝐴(𝑥(𝑘)) + 𝐵(𝑥(𝑘))𝐹(ℎ)𝐶)𝑒(𝑘)

+ (𝐴(𝑥(𝑘)) + 𝐵(𝑥(𝑘))𝐺(ℎ)𝐶)𝑥𝑟(𝑘) 

Consider 

(11) 𝑉(𝑒(𝑘)) = 𝑒𝑇(𝑘)𝑋−1(𝑥̃(𝑘))𝑒(𝑘) 

as the polynomial Lyapunov function candidate. Therefore  

(12) 

Δ𝑉 = 𝑉(𝑒(𝑘 + 1)) − 𝑉(𝑒(𝑘))

= 𝑒𝑇(𝑘 + 1)𝑋−1(𝑥̃(𝑘 + 1))𝑒(𝑘 + 1)

− 𝑒𝑇(𝑘)𝑋−1(𝑥̃(𝑘))𝑒(𝑘) 

It can be seen that  

(13) 

𝑒(𝑘 + 1) = 𝐶(𝑥(𝑘 + 1) − 𝑥𝑟(𝑘 + 1))

= (𝐴(𝑥) + 𝐵(𝑥)𝐹(ℎ)𝐶) 𝑒(𝑘)

+ (𝐴(𝑥) − 𝐴𝑟 + 𝐵(𝑥)𝐺(ℎ)𝐶)𝑥𝑟(𝑘)

− 𝐵𝑟𝑟(𝑘) 

Therefore  

(14) 

Δ𝑉

= 𝑒𝑇(𝑘 + 1)𝑋−1(𝐴̃(𝑥)𝑥)𝑒(𝑘 + 1)

− 𝑒𝑇(𝑘)𝑋−1(𝑥̃)𝑒(𝑘)

= ((𝐴(𝑥) + 𝐵(𝑥)𝐹(ℎ)𝐶)𝑒(𝑘)

+ (𝐴(𝑥) − 𝐴𝑟 + 𝐵(𝑥)𝐺(ℎ)𝐶)𝑥𝑟(𝑘)

− 𝐵𝑟𝑟(𝑘))
𝑇
𝑋−1(𝐴̃(𝑥(𝑘))𝑥(𝑘))((𝐴(𝑥)

+ 𝐵(𝑥)𝐹(ℎ)𝐶)𝑒(𝑘)

+ (𝐴(𝑥) − 𝐴𝑟 + 𝐵(𝑥)𝐺(ℎ)𝐶)𝑥𝑟(𝑘) − 𝐵𝑟𝑟(𝑘))

− 𝑒𝑇(𝑘)𝑋−1(𝑥̃(𝑘))𝑒(𝑘)

= (𝑒𝑇(𝑘)(𝐴(𝑥) + 𝐵(𝑥)𝐹(ℎ)𝐶)𝑇

+ 𝑥𝑟(𝑘)𝑇(𝐴(𝑥) − 𝐴𝑟 + 𝐵(𝑥)𝐺(ℎ)𝐶)𝑇

− 𝑟(𝑘)𝑇𝐵𝑟
𝑇)𝑋−1(𝐴̃(𝑥(𝑘))𝑥(𝑘))((𝐴(𝑥)

+ 𝐵(𝑥)𝐹(ℎ)𝐶)𝑒(𝑘)

+ (𝐴(𝑥) − 𝐴𝑟 + 𝐵(𝑥)𝐺(ℎ)𝐶)𝑥𝑟(𝑘) − 𝐵𝑟𝑟(𝑘))

− 𝑒𝑇(𝑘)𝑋−1(𝑥̃(𝑘))𝑒(𝑘) 

Selecting 𝑃+ = 𝑋−1 (𝐴̃(𝑥(𝑘))𝑥(𝑘)) and 𝑃 = 𝑋−1(𝑥̃(𝑘)) 

the last equation can be written in the matrix form of 

(15) 

𝛥𝑉
= [𝑒𝑇(𝑘) 𝑥𝑟

𝑇(𝑘) 𝑟𝑇]

∗ [

(𝐴(𝑥) + 𝐵(𝑥)𝐹(ℎ)𝐶)𝑇𝑃+(𝐴(𝑥) + 𝐵(𝑥)𝐹(ℎ)𝐶) − 𝑃

(𝐴(𝑥) − 𝐴𝑟 + 𝐵(𝑥)𝐺(ℎ)𝐶)𝑇𝑃+(𝐴(𝑥) + 𝐵(𝑥)𝐹(ℎ)𝐶)

−𝐵𝑟
𝑇𝑃+(𝐴(𝑥) + 𝐵(𝑥)𝐹(ℎ)𝐶)

 

(𝐴(𝑥) + 𝐵(𝑥)𝐹(ℎ)𝐶)𝑇𝑃+(𝐴(𝑥) − 𝐴𝑟 + 𝐵(𝑥)𝐺(ℎ)𝐶)

(𝐴(𝑥) − 𝐴𝑟 + 𝐵(𝑥)𝐺(ℎ)𝐶)𝑇𝑃+(𝐴(𝑥) − 𝐴𝑟 + 𝐵(𝑥)𝐺(ℎ)𝐶)

−𝐵𝑟
𝑇𝑃+(𝐴(𝑥) − 𝐴𝑟 + 𝐵(𝑥)𝐺(ℎ)𝐶)

 

−(𝐴(𝑥) + 𝐵(𝑥)𝐹(ℎ)𝐶)𝑇𝑃+𝐵𝑟

−(𝐴(𝑥) − 𝐴𝑟 + 𝐵(𝑥)𝐺(ℎ)𝐶)𝑇𝑃+𝐵𝑟

𝐵𝑟
𝑇𝑃+𝐵𝑟

] ∗ [
𝑒

𝑥𝑟(𝑘)
𝑟

] 

Consider 𝐻∞tracking performance related to the tracking 

error 𝑥(𝑘) − 𝑥𝑟(𝑘) as ([26]) 

(16) ∑{𝑒𝑇(𝑘)𝑄𝑒(𝑘)} < 𝜎2 ∑ 𝑤(𝑘)𝑇𝑤(𝑘)

𝑘𝑓

𝑘=0

𝑘𝑓

𝑘=0

 

where 𝑤(𝑘) is exogenous signal , 𝑘𝑓 is the final time of 

control, 𝑄 is a positive definite weighting matrix and 𝜎 is a 

prescribed attenuation level.  

By substituting 𝑤(𝑘) = [𝑥𝑟(𝑘), 𝑟(𝑘)]𝑇 in (16) and selecting 

𝜎 = diag(𝜎1, 𝜎2) we have: 

(17) ∑(𝑒𝑇(𝑘)𝑄𝑒(𝑘) − 𝜎1
2𝑥𝑟(𝑘)𝑇𝑥𝑟(𝑘) − 𝜎2

2𝑟(𝑘)𝑇𝑟(𝑘)

𝑘𝑓

𝑘=0

)

<  0 

Now consider  

(18) Δ𝑉 + ∑{𝑒𝑇(𝑘)𝑄𝑒(𝑘) − 𝜎1
2𝑥𝑟(𝑘)𝑇𝑥𝑟(𝑘)

𝑘𝑓

𝑘=0

− 𝜎2
2𝑟(𝑘)𝑇𝑟(𝑘)} <  0 

Substituting Δ𝑉 from (15) in to (18) results 
[𝑒𝑇(𝑘) 𝑥𝑟

𝑇(𝑘) 𝑟𝑇(𝑘)] ∗ 

[

(𝐴(𝑥) + 𝐵(𝑥)𝐹(ℎ)𝐶)𝑇𝑃+(𝐴(𝑥) + 𝐵(𝑥)𝐹(ℎ)𝐶) − 𝑃 + 𝑄

(𝐴(𝑥) − 𝐴𝑟 + 𝐵(𝑥)𝐺(ℎ)𝐶)𝑇𝑃+(𝐴(𝑥) + 𝐵(𝑥)𝐹(ℎ)𝐶)

−𝐵𝑟
𝑇𝑃+(𝐴(𝑥) + 𝐵(𝑥)𝐹(ℎ)𝐶)

 

(𝐴(𝑥) + 𝐵(𝑥)𝐹(ℎ)𝐶)𝑇𝑃+(𝐴(𝑥) − 𝐴𝑟 + 𝐵(𝑥)𝐺(ℎ)𝐶)

(𝐴(𝑥) − 𝐴𝑟 + 𝐵(𝑥)𝐺(ℎ)𝐶)𝑇𝑃+(𝐴(𝑥) − 𝐴𝑟 + 𝐵(𝑥)𝐺(ℎ)𝐶) − 𝜎1
2𝐼

−𝐵𝑟
𝑇𝑃+(𝐴(𝑥) − 𝐴𝑟 + 𝐵(𝑥)𝐺(ℎ)𝐶)
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−(𝐴(𝑥) + 𝐵(𝑥)𝐹(ℎ)𝐶)𝑇𝑃+𝐵𝑟

−(𝐴(𝑥) − 𝐴𝑟 + 𝐵(𝑥)𝐺(ℎ)𝐶)𝑇𝑃+𝐵𝑟

𝐵𝑟
𝑇𝑃+𝐵𝑟 − 𝜎2

2𝐼

] ∗ [

𝑒(𝑘)

𝑥𝑟(𝑘)

𝑟(𝑘)
] < 0                 (19) 

The last inequality holds if and only if 

(19) 

[

(𝐴(𝑥) + 𝐵(𝑥)𝐹(ℎ)𝐶)𝑇𝑃+(𝐴(𝑥) + 𝐵(𝑥)𝐹(ℎ)𝐶) − 𝑃 + 𝑄

(𝐴(𝑥) − 𝐴𝑟 + 𝐵(𝑥)𝐺(ℎ)𝐶)𝑇𝑃+(𝐴(𝑥) + 𝐵(𝑥)𝐹(ℎ)𝐶)

−𝐵𝑟
𝑇𝑃+(𝐴(𝑥) + 𝐵(𝑥)𝐹(ℎ)𝐶)

 

(𝐴(𝑥) + 𝐵(𝑥)𝐹(ℎ)𝐶)𝑇𝑃+(𝐴(𝑥) − 𝐴𝑟 + 𝐵(𝑥)𝐺(ℎ)𝐶)

(𝐴(𝑥) − 𝐴𝑟 + 𝐵(𝑥)𝐺(ℎ)𝐶)𝑇𝑃+(𝐴(𝑥) − 𝐴𝑟 + 𝐵(𝑥)𝐺(ℎ)𝐶) − 𝜎1
2𝐼

−𝐵𝑟
𝑇𝑃+(𝐴(𝑥) − 𝐴𝑟 + 𝐵(𝑥)𝐺(ℎ)𝐶)

 

−(𝐴(𝑥) + 𝐵(𝑥)𝐹(ℎ)𝐶)𝑇𝑃+𝐵𝑟

−(𝐴(𝑥) − 𝐴𝑟 + 𝐵(𝑥)𝐺(ℎ)𝐶)𝑇𝑃+𝐵𝑟

𝐵𝑟
𝑇𝑃+𝐵𝑟 − 𝜎2

2𝐼

] ≺ 0 

It can be seen that the last matrix inequality can be written as 

(20) 

[(𝐴(𝑥) + 𝐵(𝑥)𝐹(ℎ)𝐶)𝑇 ((𝐴(𝑥) − 𝐴𝑟) + 𝐵(𝑥)𝐺(ℎ)𝐶)𝑇 −𝐵𝑟
𝑇]𝑇

∗ 𝑃+ ∗ (𝑃+
−1𝑃+) ∗ 

[(𝐴(𝑥) + 𝐵(𝑥)𝐹(ℎ)𝐶) ((𝐴(𝑥) − 𝐴𝑟) + 𝐵(𝑥)𝐺(ℎ)𝐶) −𝐵𝑟]

− [

(𝑃 − 𝑄) 0 0

0 𝜎1
2𝐼 0

0 0 𝜎2
2𝐼

] ≺ 0 

By applying Schur complement on (20) it can be concluded 

that  

(21) [
 
 
 

(𝑃 − 𝑄) 0

0 𝜎1
2𝐼

0 0
𝑃+((𝐴(𝑥) + 𝐵(𝑥)𝐹(ℎ)𝐶)) 𝑃+((𝐴(𝑥) − 𝐴𝑟) + 𝐵(𝑥)𝐺(ℎ)𝐶)

 

0 ∗
0 ∗

𝜎2
2𝐼 ∗

−𝑃+𝐵𝑟 𝑃+

] ≻ 0 

Using the congruence transformation with 

𝑇 = diag(𝑃−1, 𝐼, 𝐼, 𝑃+
−1) on the last inequality results 

(22) 
[
 
 
 

𝑃−1(𝑃 − 𝑄)𝑃−1

0
0

((𝐴(𝑥) + 𝐵(𝑥)𝐹(ℎ)𝐶))𝑃−1

 

0 0 ∗
𝜎1

2𝐼 0 ∗

0 𝜎2
2𝐼 ∗

((𝐴(𝑥) − 𝐴𝑟) + 𝐵(𝑥)𝐺(ℎ)𝐶) −𝐵𝑟 𝑃+
−1]

 
 
 

≻ 0 

Selecting 𝐹(ℎ)𝐶𝑃−1 = 𝑀(𝑥) results and using Lemma 2.2 

(23) 
[
 
 
 
 

𝑋 𝑋
𝑋 𝑄−1

0 0
0 0

𝐴(𝑥)𝑋 + 𝐵(𝑥)𝑀(𝑥) 0

 

0 0 ∗
0 0 ∗

𝜎1
2𝐼 0 ∗

0 𝜎2
2𝐼 ∗

((𝐴(𝑥) − 𝐴𝑟) + 𝐵(𝑥)𝐺(ℎ)𝐶) −𝐵𝑟 𝑋+]
 
 
 
 

≻ 0 

Matrix inequality (23) can be solved using SOS 

programming solvers to find matrices 𝑋, 𝑀 and 𝐺. □ 

Remark 1: In the case where all of the states of the system 

are presented in the output vector (𝐶 = 𝐼) the controller gain 

can be calculated from 

(24) 𝐹 = 𝑀𝑋−1 

Remark 2: Consider the case where 𝐶 =

[𝐼𝑞×𝑞 0(𝑛−𝑞)×(𝑛−𝑞)]. In this case, one can select 𝑋(𝑥̃) as 

𝑋(𝑥̃) = diag(𝑋11, 𝑋22(𝑥̃)) where 𝑋11 ∈ ℝ𝑞×𝑞 and 

 𝑋22 ∈ ℝ(𝑛−𝑞)×(𝑛−𝑞) . Therefore the controller gain can be 

calculated from 

(25) 
𝑀 = 𝐹𝐶𝑋 = 𝐹𝐶 diag(𝑋11, 𝑋22(𝑥̃)) 

𝐹 = 𝑀𝑋11
−1 

Remark 3: Let 𝐶𝑇𝐶 be full rank. Select 𝐹 = 𝐹′ ∗
(𝐶𝑇𝐶)−1𝐶𝑇. It is clear that 𝐹′ ∈ ℝ𝑚×𝑛 and  

(26) 
𝑀 = 𝐹𝐶𝑋 = 𝐹′𝑋 

𝐹′ = 𝑀𝑋−1 

Remark 4: Let 𝐶𝐶𝑇 be full rank. Therefore the controller 

gain can be calculated from 

(27) 
𝑀 = 𝐹𝐶𝑋 

𝐹 = 𝑀𝑋−1𝐶𝑇(𝐶𝐶𝑇)−1 

IV. SIMULATION EXAMPLES 

In this section, some examples are presented to illustrate the 

merits of the proposed approach. The third-party MATLAB 

toolbox SOSTOOLS [4] is employed to find the feasible 

solution of Theorem 1 numerically. After finding the feasible 

solution for decision matrices 𝑃, 𝑀 and 𝐺 the remaining 

controller gain (𝐹) can be computed using Remark 1 to 

Remark 4 . 

A. Example1: 

Consider the discrete-time nonlinear dynamics of the tunnel 

diode circuit sampled at 𝑇 as ([23]): 

(28) 

𝑥1(𝑘 + 1) = 𝑥1(𝑘) + 𝑇[−0.1𝑥1(𝑘) − 0.5𝑥1
3(𝑘)

+ 50𝑥2(𝑘)] 
𝑥2(𝑘 + 1) = 𝑥2(𝑘) + 𝑇[−𝑥1(𝑘) − 𝑥2(𝑘) + 𝑢(𝑘)] 

𝑦(𝑘) = 𝐶𝑥(𝑘), 𝐶 = 𝐼,     𝐷 = 0 

The stable reference model for this example is chosen as a 

linear system with 𝐴𝑟 = [
0.9994 0.05
−0.001 0.99

] and 𝐵𝑟 = [
0

0.001
]. 

In this example we choose 𝑇 = 0.001. Moreover, choosing 

𝑋(𝑥̃), 𝑀(ℎ) and 𝑁(ℎ) as constant matrices, 𝜎1 =2, 𝜎2 = 1  

and 𝑄 = diag(10−3, 10−1), the controller gains are obtained 

as: 
𝐹(ℎ) = [−2.846 −755.1] 
𝐺(ℎ) =  [0.0008 8.283] 

Moreover, 𝑃−1 = 𝑋 = diag(0.6357,0.2089). The 

controller is employed to control the nonlinear plant subject to 

the initial condition 𝑥0 = [0.1 0.05]. On the other hand, the 

initial condition of the referenced model is chosen as 

 𝑥𝑟0 = [0.2 −0.1]. The system responses to sinusoidal input 

𝑟(𝑘) = sin(5𝑘) and step input are shown in Fig.1 and Fig.2 

respectively. It can be seen from the figures that the system 

outputs are able to follow those of the reference model. 

B. Example2: 

Consider the polynomial system [19] 

(29) 

[
𝑥̇1(𝑡)

𝑥̇2(𝑡)
]

= [−𝑥1 + 𝑥1
2 −

3

2
𝑥1

3 −
3

8
𝑥1𝑥2

2 +
1

4
𝑥2 − 𝑥1

2𝑥2 −
1

4
𝑥2

3

0

]

+ [
0

1.1
] 𝑢 

𝑦1 = 𝑥1 − 𝑥2 
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𝑦2 = 𝑥2 

 

 
Fig.1: Example 1-Sinusoidal reference tracking  

Fig.2: Example 1-Step reference tracking 

 

If the system (29) is sampled at 𝑇 and by Euler’s 

discretization method then the discrete-time dynamic 

equationscan be derived as: 

(30) 

𝐴 = [1 + 𝑇[−1 + 𝑥1(𝑘) −
3

2
𝑥1

2(𝑘) −
3

8
𝑥2

2(𝑘) − 𝑥1(𝑘)𝑥2(𝑘)

0

 

𝑇[0.25 − 0.25𝑥2
2(𝑘)

1
] 

𝐵 = [
0

1.1T
] 

𝐶 = [
1 −1
0 1

] 

In this example, the stable reference model is chosen as 

𝐴𝑟 = [
0.75 0.0002
0 0.999

], 𝐵𝑟 = [0 0.0011]𝑇  and sampling 

period as 𝑇 = 0.01. Given 𝑃as a constant matrix, 𝑀(ℎ)and 

𝑁(ℎ)as polynomial matrices with degree of 2 where ℎ =
[𝑦1 𝑦2]𝑇 , 𝜎1 =3, 𝜎2 =3 and 𝑄 = diag(10−2, 10−1), the 

controller gains are obtained as: 

𝐹(ℎ) = [𝐹1 𝐹2] 
𝐹1 =  0.001  𝑦1 + 0.002  𝑦2  −  5.225 × 10−8𝑦1𝑦2  +  3.672

× 10−7𝑦1
2 +  1.022 × 10−10𝑦2

2  −  5.861 

𝐹2 =   0.001 𝑦1 + 0.002 𝑦2  −  5.196 × 10−8𝑦1𝑦2  +  3.673

× 10−7𝑦1
2  +  1.103 × 10−10𝑦2

2 − 437.2 

𝐺(ℎ) = [𝐺1 𝐺2] 

𝐺1 = −0.002𝑦1 −  1.589 × 10−9𝑦1 𝑦2  −  1.733 × 10−9𝑦1
2  +  2.04

× 10−10𝑦2
2  −  0.3504 

𝐺2 = −0.002𝑦1  +  2.004 × 10−9𝑦1𝑦2  −  1.729 × 10−9𝑦1
2  + 1.977

× 10−10𝑦2
2  −  0.2259 

Moreover, 𝑃−1 = 𝑋 = diag(0.3266,5.88). The system 

responses to sinusoidal input 𝑟(𝑘) = 0.5 sin(5𝑘) and step 

input are shown in Fig.3 and Fig.4. It can be seen from the 

figures that the system outputs have tracked those of the 

reference model. In this simulation the initial condition of the 

plant and the reference model have selected as 

  𝑥0 = [0.2 0.01] and 𝑥𝑟0 = [−0.2 0], respectively. 

 
Fig.3: Example 2 - Sinusoidal reference tracking 

 
Fig.4:Example 2- Step reference tracking 

C. Example3: 

Consider the chaotic system (Henon mapping) [27] 

(31) 
𝑥1(𝑘 + 1) = −𝑥1

2(𝑘) + 0.3𝑥2(𝑘) + 𝑢(𝑘) 

𝑥2(𝑘 + 1) = 𝑥1(𝑘) 

𝑦 = 𝑥1(𝑘) 

In this example, the stable reference model is chosen as 

𝐴𝑟 = [
0.6 0.3
1 0

], 𝐵𝑟 = [
1
0
]. Choosing 𝑋(𝑥̃) as a constant 

matrix, 𝑀(ℎ) and 𝑁(ℎ) as polynomial matrices with  

degree of 2 where ℎ = 𝑦, 𝜎1 = 4, 𝜎2 = 4 and 𝑄 = diag(1,1), 

the controller gains are calculated as: 

 
𝐹(ℎ) = − 8.992 × 10−12𝑦2 +  𝑦 +  0.003552 

𝐺(ℎ) = − 2.2.6 × 10−12𝑦2 + 𝑦 + 0.6983 
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Moreover we have 𝑃−1 = 𝑋 = diag(0.13,0.24). Setting the 

initial condition 𝑥𝑟0 = [−0.5 −0.1] and 𝑥0 = [0.5 0] for 

reference model and plant respectively, the system responses 

to sinusoidal input 𝑟(𝑘) = 0.5 sin(5𝑘) and step input are 

shown in Fig.5 and Fig.6. It can be seen from the figures that 

the system output has tracked that of the stable reference 

model. 

 
Fig.5:Example 3-Sinusoidal reference tracking 

 
Fig.6: Example 3-Step reference tracking 

 

I.V. CONCLUSION 

In this paper we studied tracking control synthesis problem 

for nonlinear polynomial discrete-time systems. The proposed 

controller drove the plant such that its state vector followed 

those of a stable reference model. Sufficient conditions for the 

existence of controller presented in terms of constraints of a 

feasibility SOS program that could be solved using numerical 

solvers such as SOSTOOLS. We discussed the proposed 

approach for the two case of state and output feedbacks. 

Finally, the merits of the proposed approach showed using the 

simulation of several examples.  
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