New Anastomosis Group F (AG-F) of binucleate Rhizoctonia causing root and stem rot of Pistacia vera

Hossein Alaei1*, Saeed Molaei1, Seyed Bagher Mahmoodi2 and Roohollah Saberi-Riseh1

1. Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran.
2. Sugar Beet Seed Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran.

Abstract: A total of ten isolates of fungi with Rhizoctonia-like mycelia were obtained from infected roots and stems of Pistachio Pistacia vera grown in a commercial nursery in Rafsanjan, Iran, during the autumn of 2011. The infected seedlings showed symptoms of chlorosis that later turned to necrosis. All of the isolates were identified as binucleate Rhizoctonia on the basis of hyphal characteristics and nuclear number. They were tested for detection of the anastomosis group, optimum growth temperature, rDNA-ITS region traits and pathogenicity on pistachio seedlings in vitro and in vivo. The analysis of hyphal anastomosis reaction was carried out with the tester isolates of binucleate Rhizoctonia AG-A, AG-Ba, AG-G and AG-F as well as multinucleate Rhizoctonia AG4 as already detected on pistachio seedlings. The optimum temperature for growth of binucleate Rhizoctonia sp. was 35 °C. In in vivo test, the symptoms of root rot were observed 30 days after inoculation and mortality happened two weeks thereafter. According to molecular characteristics and anastomosis test groups, all isolates showed greatest similarity to anastomosis group AG-F. This finding is the first report of anastomosis group F (AG-F) of binucleate Rhizoctonia, as causal agent of root and stem rot disease of pistachio in the world and Iran.

Keywords: Pistachio, Pathogenicity, ITS-rDNA, DNA extraction, PCR

Introduction

Pistachio Pistacia vera L. is one of the most important commercial products in Iran where about 450000 hectares of land area is under pistachio cultivation (Statistical Center of Iran, 2014). Kerman province is the largest region for pistachio cultivation as well as the center of pistachio seedling production. Soil-borne plant pathogenic fungi and fungus-like agents, including Pythium, Phytophthora, Verticillium, Armillaria and Rosellinia, are known as serious pathogens of pistachio trees with a worldwide distribution (Teviotdale et al., 2002). Damping off, root rot and stem rot caused by Rhizoctonia solani AG-4 are the most serious diseases of this crop in nurseries and are associated with severe economic losses (Ashkan and Abusaidi, 1995; Ilkhan et al., 2011). Rhizoctonia spp. have been classified into uninnucleate, binucleate and multinucleate groups based on the cell nuclear number (Sharon et al., 2007; Sharon et al., 2006; Sneh et al., 1998). Affinity for hyphal fusion (anastomosis) (Burpee et al., 1980; Ogoshi et al., 1983; Parmeter and Whitney, 1970) has been used to characterize isolates among Rhizoctonia spp. and binucleate Rhizoctonia (BNR) species with Ceratobasidium telemorphs (Yang and Li, 2012). To date, isolates of R. solani have been assigned to 13 anastomosis groups (AG-1 to AG-13) based on hyphal anastomosis reactions.
Binucleate Rhizoctonia sp. AG-F on Pistacia vera

(Rinehart et al., 2007; Sneh et al., 1998) and those of R. zeae and R. oryzae have each been assigned to their own one group (Carling, 1996; Carling et al., 2002; Carling et al., 1999; Sneh et al., 1998). Most of the R. solani AGs are recognized as important plant pathogens, while the BNR species do not form a homogenous species and are mostly considered as non-pathogenic mycorrhizal fungi or having a role as biocontrol agents and commonly found in soil organic matter or in plant debris (Adams, 1988; Andersen and Rasmussen, 1996; Anderson, 1982; Burpee and Goulty, 1984). Only a few AGs of the known BNR species are pathogenic. The BNR species as pathogens cause several diseases such as damping-off, root rot, stem rot, sheath blight, fruit decay and foliar blight on a wide range of important agricultural plants (Parmeter and Whitney, 1970; Tanaka et al., 1994). The BNR have been divided into 21 anastomosis groups (AG-A to AG-U), although the tester strains of AG-J and AG-M have been excluded from the BNR species because they have clamp connection (Hyakumachi et al., 2005; Ogoshi et al., 1983; Sneh et al., 1998). AG-B has been further divided into three subgroups AG-Ba, AG-Bb and AG-Bo based on the frequency of hyphal anastomosis and cultural characteristics (Sneh et al., 1998). Differentiation of these three subgroups of AG-B is supported by polymorphism in the ribosomal RNA gene (Cubeta et al., 1991). Also AG-D has been subdivided into two subgroups AG-D (I) and AG-D (II) based on cultural morphology and pathogenicity (Tanaka et al., 1994). Pistachio damping off caused by Rhizoctonia solani AG-4 was reported from a nursery in Kerman province, Iran (Ashkan and Abusaidi, 1995) as well as California, USA (Holtz et al., 1996) with a severe economic damage. To our knowledge, to date there is no report on the BNR causing root and stem rot on pistachio in Iran or anywhere else in the world. However, the BNR species have been reported as pathogens causing root rot on strawberry (Martin, 1988; Perez Vicente et al., 2008; Sharon et al., 2007), bean (Xue et al., 1998) and yacon (Fenille et al., 2005). During the summer and fall of 2010 and 2011 root and stem rots symptoms leading to plant death were observed in commercially grown pistachio nursery in Rafsanjan, Iran. Considering the local importance of this Rhizoctonia like disease for pistachio production, the objective of this study was to characterize the Rhizoctonia spp. associated with root and stem rot of pistachio by determining their nuclear condition, hyphal anastomosis grouping, morphology and mycelia growth rate at different temperatures, virulence and genetic identity with other Rhizoctonia spp. based on sequencing analysis of the ITS-5.8S rDNA region and PCR-RFLP.

Materials and Methods

Sampling, fungal isolation and culture maintenance
Infected pistachio seedling samples with chlorotic leaves and/or necrotic lesions and dry brown root and stem rot symptoms were collected from a commercial pistachio nursery in Rafsanjan, Iran, during the summer and autumn of 2010 and 2011. Symptomatic roots were washed thoroughly in running tap water for 30 min to remove adhered soil particles, air dried, then cut into 5 mm pieces. Roots and stems were surface disinfected with 0.5% commercial sodium hypochlorite solution for 2 min and rinsed three times with sterile distilled water. Pieces of root and stem were dried separately on sterilized filter paper, placed on petri dishes containing acidified water agar (AWA, pH 4.5) using 10% lactic acid. Cultures were incubated for 2 to 3 days at 25 °C in dark (Carling et al., 2002). Cultures were examined microscopically and fungal colonies with characteristics typical of Rhizoctonia like fungi were hyphal tipped and sub-cultured onto potato dextrose agar (Merck, Germany). Pure cultures were stored in PDA slant tubes or sterile barley grain at 4 °C.

Cultural appearance and Induction of teleomorph
To evaluate the cultural appearance of the isolates, a single agar disks (7-mm diameter) containing mycelium from 2- to 3-day-old cultures of Rhizoctonia sp. growing on PDA were placed in the center of 9 mm petri dishes
containing PDA and incubated either at 25 °C in dark or in the refrigerator. Cultures were evaluated 25 days after incubation. The sclerotia production of each isolate was investigated according to the method used by Oniki et al. (1985). In brief fresh cultures of isolates were grown on a modified Potato Yeast Extract Agar (PYEA) which was acidified to pH 4.5 using 10% lactic acid. Cultures were incubated at 27 °C and when the hyphae reached to the margin of the dish, they were covered to the rim with air dried soil aggregates. The cultures were incubated at room temperature and the petri dish lids removed. Humidity was maintained by watering the soil 1-3 times daily, while excess moisture was drained. Production of hymenia on the surface of soil would be expected within 12-14 days afterwards.

Nuclear conditions and AG determination of isolates

The number of nuclei per hyphal cell was determined by the procedure of Bandoni (1979). A single agar disk (7-mm diameter) containing mycelium from 2- to 3-day-old cultures of *Rhizoctonia* sp. growing on PDA was placed on a clean, sterile, microscopic glass slide and incubated for 1-2 days in a moist chamber at 25 °C in dark. Nuclei were stained using a drop of safranin O and 3% KOH (1:1v/v). Twenty five cells of each isolate were examined at ×400 magnifications using bright field microscopy for the number of nuclei. To determine anastomosis group of isolates, the glass-slide technique was used as described by Kronland and Stanghellini (1988). A single agar disk (7 mm-diameter) was cut from the edge of a 2- to 3-day-old colony on PDA and placed on a clean glass slide. Tester isolates AG-A, AG-Ba, AG-G and AG-F as well as multinucleate *Rhizoctonia* AG4 were placed 3 to 4 cm away from each tested isolates. Slides were put in a moist chamber and incubated at 25 °C for 24 to 48 h in the dark. Excess moisture was wiped from the bottom of the slide. When the hyphae from the two disks were overlapping, they were stained using safranin O and 3% KOH (1: 1 v/v) and examined microscopically to determine anastomosis reaction (Carling, 1996; Kronland and Stanghellini, 1988).

Hyphal growth rates and diameter determination

A single agar disk (7-mm diameter) containing mycelium from 2- to 3-day-old cultures of *Rhizoctonia* sp. growing on PDA was placed on a clean, sterile, microscopic glass slide that was covered by 2% WA and incubated for 1-2 days in a moist chamber at 25 °C in dark. After 24-48h of incubation, the hyphae were stained with Fushin acid and evaluated using the optical microscope with ×400 magnifications. In order to measure the hyphal diameter at least 50 samples were measured and their mean was taken as the hyphae diameter (Sneh et al., 1998). Radial growth rates of isolates were determined at 5, 15, 20, 25, 30 and 40 °C. A single agar disk (7 mm diameter) containing mycelium from the margin of a 2- to 3-days colony was transferred to PDA in the center of 9 cm petri dish. Measurements were taken 12h after incubating petri dishes to allow temperature diffusion to agar. Colony radius was measured at 24h intervals until the colony reached the edge of the petri dish. Treatments were replicated three times and experiment was repeated twice.

In vitro and in vivo pathogenicity test

In vitro pathogenicity test of the isolates on seedlings in petri-dish were based on the method described by Ichielvich-Auster (1985), using pistachio seeds and other host plants including radish, melon, watermelon, lentil, sugar-beet, eggplant, tomato, sunflower, tare and wheat. Isolates were grown on PDA and incubated at 25 °C for 2-3 days, then a mycelial agar disc (6 mm diameter) was excised and inoculated centrally on agar (2% Merck) plate and incubated at 25 °C for 24h. Three replicate plates were inoculated per each isolate. Five germinated pistachio seeds or other tested host plants were placed around the periphery of each colony 3-4 cm apart. The rootlets of the plants were examined after 7 days incubation at 25 °C. Disease severity was evaluated based on the relative size of necrotic area on the roots using the scale of 0-5 (Ichielvich-Auster, 1985) with some modification as follow: 0 = no disease; 1 = 1-10%; 2 = 11-30%; 3 = 31-50%; 4 = 51-80%; and 5 = 100%.
Isolates causing a mean disease severity between 0 and 1 were considered non-pathogenic.

In vivo pathogenicity test was determined on six months and one-year old pistachio seedlings using the methods described by Yang and Verma (1992). Inoculum of Rhizoctonia isolates was prepared by growing each isolate in a 500 mL erlenmeyer flask containing 100g of barley grain and 100 mL of distilled water. Flasks were sterilized at 121 °C for 20 min and inoculated with three 7 mm- diameter mycelial disks of the isolates cut from the edges of 3-day-old Rhizoctonia sp. growing on PDA. Flasks were incubated at 25 °C for 10 days in the dark and shaken regularly to aid uniform colonization. Infested barley grain was air dried for 1 week and stored at 4 °C until use. Soil containing gravel was partially sterilized on two consecutive days at 121 °C and 100 mL of sterile barley grain served as negative controls. Soil inoculated with Rhizoctonia-infested soil in 15 cm-diameter plastic pots. Soils inoculated with sterile barley grain served as negative controls. Pots were covered with black vinyl sheet, incubated at room temperature for 24 h to stimulate the growth of Rhizoctonia sp., and then transferred to the greenhouse. Disease severity was determined five weeks after inoculation based on rating disease symptoms on roots as described by Ruppel et al. (1979): (0) No visible lesions, plants apparently healthy, (1): < 1% of the root surface with visible Rhizoctonia lesions, (2): > 1–5% of the root surface with visible lesions, (3): > 5–10% of the root surface with dry-rot canker (4): > 10–25% of the root surface with dry-rot canker (5): > 25–50% of the root surface with dry-rot canker, (6): > 50–75% of the root surface with dry-rot canker, (7): > 75% of the root surface with dry-rot canker (8): seedling dead with root rot.

Molecular characterization of rDNA-ITS DNA Extraction

Each isolate was grown on 100 ml of liquid potato dextrose medium. Cultures were maintained at 25 ± 1 °C with shaking (150 rpm) for one week. Mycelia mats were harvested by filtration, washed three times with sterile distilled water and powdered with liquid nitrogen using a mortar and pestle, kept at -80 °C. Genomic DNA was extracted from mycelium using a modification of the cetyltrimethylammonium bromide (CTAB) extraction procedure described by Murray and Thompson (1980). In brief, 450µl extraction buffer (0.7M NaCl (Merck, Germany), 50mM Tris-HCl (pH 8.0) (sigma, St. Louis, USA), 0.01M Na2-EDTA (Merck), 1% (v/v) β-mercapto ethanol (Sigma) and 1% CTAB (Sigma)) were added to the pellet of mycelium. The mixture was briefly mixed and incubated at 65 °C in a water bath for 30 min. Then an equal volume of chloroform: isoamylalcohol (24:1 (v/v)) was added to the sample. The mixture was emulsified using a vortex and subsequently centrifuged at 16,000 g for 15 min. The clear supernatant was transferred to a new tube and the nucleic acids were precipitated with isopropyl alcohol and centrifuged at 16,000 g for 5 min. The pellet was washed in 70% EtOH and re-centrifuged. Finally the pellet was dried at room temperature re-suspended in 50µl of sterilized milliQ water and stored at -20 °C. DNA concentrations were determined using the Nanodrop (Thermo Scientific, USA).

Polymerase chain reaction and PCR-RFLP

PCR amplification of the ITS1-5.8S-ITS2 region of the rDNA was achieved with a GeneAmp PCR System C-1000 (BioRad, USA) thermocycler. The primer combinations were ITS1-F (5'-CTT-GGT-CAT-TTA-GAG-GAA-GTA-A-3') (Gardes and Bruns, 1993) and ITS4 (5'-TCC-TCC-GCT-TAT-GTA-TAT-GC-3') (White et al., 1990). The PCR reaction mixture (25 µL) contained PCR Buffer (10 mM Tris-HCl, 50 mM KCl; pH 8.8) (Sinaclon, Iran), 2.5 mM MgCl2 (Sinaclon), 0.2 mM of dNTP (Roche, Mannheim Germany), 0.2 μM of each primer, 1.5 units Ampli Taq polymerase (Sinaclon), and 5 μL of DNA template. The PCR profile was: an initial preheat at 94 °C (5 min), 40 cycles of denaturation at 94 °C (1 min), annealing at 45 °C (1min) and extension at 72 °C (1 min), followed by a final extension
at 72°C (10 min). Five μl of PCR product were analyzed by electrophoresis on 1.5% agarose gel followed by staining with ethidium bromide and photographing under a UV transilluminator. The obtained PCR products were also digested with two restriction endonuclease enzymes Bstf5I and Tra9I (MBI Fermentas, Lithuania) and the RFLP patterns were obtained (Falahati-Rastegar et al., 2010; Kilicoglu and Ozkoc, 2010). Typical restriction enzyme reactions consisted of 8 μl of PCR product, 10 units of restriction enzyme, 2.5 μl of reaction buffer and MiliQ-water to a total volume of 20 μl. Reactions were incubated for 4 h at 65°C according to manufacturer's recommendations.

Sequencing and phylogenetic analysis

PCR products were cleaned using the AxyPrep® PCR Clean-up Kit (Roche Molecular Biochemicals) according to the manufacturer's instructions. Direct sequencing of the PCR products was done by the DNA sequencing laboratory of MilleGen (Labege, France). The complete rDNA ITS regions were sequenced in both directions using the primers ITS1F and ITS4. Sequence data were analysed using Chromas 1.45 (copyright ©1996-1998, Conor McCarty) and verified manually. DNA sequence data obtained in this study has been deposited in GenBank. DNA sequences were compared to homologous sequences registered in GenBank using the standard nucleotide-nucleotide BLAST protocol (http://www.ncbi.nlm.nih.gov/BLAST/). In order to determine the extent and location of ITS sequence variation between different isolates, the sequences were aligned using ClustalX 1.81 (Thompson et al., 1997), followed by minor manual editing to uniformly present the location of nucleotides in repeat sequences. For phylogenetic analysis, the alignment of sequence data was performed comprising complete ITS1, 5.8S and ITS2 sequences of representative isolate along with the sequences of the identified species obtained from Genebank, including Ceratobasidium sp. AG-F (DQ102440.1, DQ102439.1, DQ102436.1, DQ102437.1, DQ102438.1, DQ102441.1, DQ102435.1, JF705215.1, DQ102433.1, DQ102432.1, AF354085.1), Rhizoctonia sp. AG-F (JF519832.1), Rhizoctonia sp. AG-Fb (FR734297.1) and Rhizoctonia sp. AG-G (KC825348.1). Single gaps were treated as missing data. *R. oryzae* (FJ766520.1, KT362135) was used as outgroup. Sequences were aligned with the help of MAFFT v7 (Katoh and Standley, 2013) under the default settings using the server available at https://toolkit.tuebingen.mpg.de/mafft (Alva et al., 2016). The model of sequence evolution was optimized with the help of ModelTest using Mega 7.0 software (Kumar et al., 2016). The model indicated as the best fit model was T92 + G. The clustering methods, Neighbor-joining (NJ) (Saitou and Nei, 1987) as well as Maximum Parsimony (MP) were used to estimate the phylogeny with the aid of Mega 7.0 software (Kumar et al., 2016) and Maximum Likelihood (ML) distances. 1000 bootstrap replicates were performed.

Results

Sampling and morphological identification of isolates

A total of twelve infected pistachio samples were collected. Infected root and stems turned dark brown or black (Fig. 1A). The fresh shoots and leaves of the infected plants showed chlorosis, later turned necrotic. Because roots and stems suffered from severe rot, plants died a few days later due to disruption of water and nutrients translocation. Mycelia were often found on infected roots and stems near the soil surface. Disease was frequently observed on young (six months and one-year old) plants. Twelve isolates were obtained from infected root and stem rot including two isolates of Fusarium sp. and ten isolates showed typical Rhizoctonia like hyphal characteristics. The vegetative myceliums of Rhizoctonia isolates on PDA were in shades of white to light color when young and turned into production of aggregated mycelia at later age. Aerial mycelia were produced in all isolates after 7 days but sclerotia were neither produced on PDA at room temperature nor in the refrigerator temperature (Fig. 1B).
Nuclear condition and AG determinations

Rhizoctonia isolates recovered from infected roots and stems of pistachio seedlings had binucleate vegetative hyphal cells. The BNR isolates failed to anastomose with tester isolates of AG-A, AG-Ba, AG-G as well as multinucleate Rhizoctonia AG4 but anastomosed with AG-F. This anastomosis reaction was in C2 category.

In vitro and in vivo pathogenicity test

The results of in vitro pathogenicity test showed that all isolates of Rhizoctonia sp. could infect germinated seeds of pistachio with disease severity of 100% as well as melon (100%), watermelon (90%), radish and lentil (90%), sugar-beet (80%), eggplant and tomato (60%), sunflower and tare (40%) and wheat (20%). High disease severity on germinated seeds was observed 7 days after inoculation (Fig. 1C). All isolates of Rhizoctonia that were originally isolated from pistachio caused disease symptoms after five weeks on six-month old seedlings. No symptoms were observed on one-year old seedlings. Disease symptoms began to appear about 30 to 34 days after inoculation. The first symptoms were chlorosis and necrosis on the upper part of the plants and later turned to defoliation. The infected plants had rotted and dried roots. All lateral roots were destroyed and the main root showed dry rot symptoms. Plants showing severe damage declined and finally mortality occurred. Based on Koch’s postulates, the binucleate Rhizoctonia sp. was also re-isolated from inoculated tissue. No symptoms were observed on control treatment.

Hyphal growth rates and diameter determination

Hyphal growth rates of all isolates of the BNR were similar at all temperatures. All BNR isolates studied in this research could not grow at 5 °C but they were able to grow at 10 to 40 °C (Fig. 2). The optimum growth temperature for all isolates was 35 °C. The diameter of hyphal cell wall ranged from 3–5µm, which were thinner than those of R. solani.

Characterization of the rDNA ITS sequences and PCR-RFLP

PCR amplification of the rDNA ITS region of Rhizoctonia isolate using the ITS1F-ITS4 primer pairs was successful and gave PCR products of 718 base pair (bp) (results not shown). The complete genomic DNA sequences between the primers ITS1F-ITS4 was obtained for the BNR isolate VRU-R1. The rDNA ITS nucleotide sequences of the isolates showed high sequence homology (100% identity). No significant intra-specific variation was observed. The sequence of representative isolate was submitted to GenBank with accession number of KF841441. The GenBank-BLAST homology search using these ITS sequences revealed binucleate Rhizoctonia sp. AG-F as the most similar sequence (> 99% identity) with GenBank entries FR734294 and JF519832, which is a partial and complete sequence of ribosomal RNA genes derived from Nicotiana tabacum and apple root stock M9 respectively (Gurkanli and Ozkoc, 2011; Kelderer et al., 2012).

Figure 1 Rhizoctonia sp. AG-F. (A) Symptom of root and stem rot on pistachio seedlings, (B) Morphology of 7-day-old colony on PDA at 28 °C, (C) in vitro pathogenicity test on pistachio germinated seeds.
Figure 2 Mycelial growth of binucleate Rhizoctonia sp. AG-F on PDA at different temperatures after 24 and 48 h.

The length of the amplified fragments in our study was 717 bp, which consisted of 71 bp of the 3’ end of 18S rDNA, 201 bp of ITS1 region, 162 bp of 5.8S rDNA, 254 bp of the ITS2 region, and 29 bp of the 5’ end of the 28S rDNA (Fig. 3). The nucleotide composition of the ITS1-5.8S-ITS2 sequences averaged 18.38% C, 32.17% T, 28.69% A and 20.75% G. The rDNA-ITS region, including ITS1, 5.8S, and ITS2 for the isolates of binucleate Rhizoctonia sp. AG-F and the tester isolates of R. solani anastomosis group of AG-4, AG-3 and AG2-2 were amplified and digested using two discriminating restriction enzymes (BstfSI and Tru9I) (Fig. 4, Table 1). Phylogenetic analyses aimed to determine the phylogenetic position and relationship of the obtained isolates among the identified species of Rhizoctonia. The topology of trees obtained from different analysis methods were the same (data not shown) and binucleate Rhizoctonia sp. AG-F was monophyletic group and well supported with bootstrap of 98% in all analysis (Fig. 5).

Figure 3 Alignment of the complete nucleotide sequence of the internal transcribed spacer (ITS1 and ITS2) region and the 5.8S subunit of the nuclear ribosomal RNA genes of Rhizoctonia sp. AG-F isolate VRU-R1 isolated from pistacio seedlings with accession number FR734294.1 (Gurkanli and Ozkoc, 2011). The sequences are written 3’ to 3’. Identical nucleotides are indicated by dots. The ITS1 and ITS2 regions are marked with arrows.
Binucleate Rhizoctonia sp. AG-F on Pistacia vera

Figure 4 PCR-RFLP pattern of ITS1-5.8S-ITS2 amplified using ITS1F-ITS4 primer with two restriction endonuclease enzymes Bstf5I (A) and Tru9I (B) in Binucleate Rhizoctonia sp. AG-F compared to other Anastomosis Groups on 2% agarose gel. A: (M) 100 bp DNA Ladder, lanes 1-3: Potato, AG-3, lane 4: Pepper, AG-4, lane 5: Pistachio, AG-F. B: (M) 100 bp DNA Ladder, lane 1: Pistachio, AG-F, lane 2: Sugar beet, AG-2, lane 3, 4: Potato, AG-3, lane5: Pepper, AG-4.

Table 1 Estimated length of digestion fragments of the amplified rDNA-ITS region of binucleate Rhizoctonia AG-F using primer set ITS1f-ITS4 in compare to other AGs.

<table>
<thead>
<tr>
<th>Rhizoctonia isolates (AG)</th>
<th>Host</th>
<th>Fragment lengths (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Tru9I</td>
</tr>
<tr>
<td>AG-F</td>
<td>Pistachio</td>
<td>80, 190, 220</td>
</tr>
<tr>
<td>AG-4</td>
<td>Pepper</td>
<td>100, 120, 220, 260</td>
</tr>
<tr>
<td>AG-3</td>
<td>Potato</td>
<td>80, 210, 220</td>
</tr>
<tr>
<td>AG-2-2</td>
<td>Sugar beet</td>
<td>100, 150, 250, 290</td>
</tr>
</tbody>
</table>

Discussion

Soil borne plant pathogenic fungi that cause root and stems rots and yield reduction in most pistachio growing regions of the world as well as in Iran are Rhizoctonia, Phytophthora, Pythium, Verticillium, Fusarium and Armillaria spp. (Holtz et al., 1996; Banihashemi, 1995). Isolates of R. solani AG-4 cause seed rot, post-emergence damping off and root rots of pistachio have already been detected and identified in the US (Holtz et al., 1996) and Iran (Ashkan and Abusaidi, 1995; Ilkhan et al., 2011) but to our knowledge according to available literatures there is no reported data for the BNR on Pistachio. In current study we obtained ten BNR isolates from symptomatic roots and stems rot on pistachio seedlings from nursery in Rafsanjan. The isolates were in morphology of light colony type having binucleate vegetative hyphal cells and were identified as AG-F based on the results of anastomosis tests that confirmed the C2 anastomosis reaction type as well as, by rDNA-ITS sequence analysis. Therefore this is the first report of binucleate Rhizoctonia sp. AG-F as inducer of stem and root rot of pistachio in Iran and the world. Mature cultures of AG-F collected from pistachio were similar in appearance to those of AG-F tester strains on PDA. Some conventional (anastomosis tests) and molecular analysis results from several studies (Martin, 2000; Sharon et al., 2008) have suggesting that the BNR species do not form a
homogenous species and are mostly considered as non-pathogenic mycorrhizal fungi (Adams, 1988; Andersen and Rasmussen, 1996; Anderson, 1982; Burpee and Goulty, 1984) but in this study in vitro and in vivo pathogenicity tests of isolates on pistachio seedling showed that they are pathogenic. These data are supported by other researchers who indicated that isolates belonging to anastomosis group F can cause diseases on pea, radish, onion, lettuce, tomato, and cotton (Sneh et al., 1998). In addition, although our results provide an evidence for homogeneity of species in this anastomosis group (AG-F) and which is supported by other researchers based on anastomosis (Eken and Demirci, 2004) or molecular (Fang et al., 2013) studies, our results were not in accordance with data reported by Gurkanli and Ozkoc (2011) who have introduced the subsets of AG-Fa and AG-Fb from Turkey. Also, it still needs further studies using more AG-F samples from a wide variety of pistachios and different locations. The PCR amplification of the rDNA ITS region of binucleate Rhizoctonia sp. isolates using the ITS1F-ITS4 primer pairs gave 719 bp fragment as supported by (Gurkanli and Ozkoc, 2011). Identification and separation of binucleate Rhizoctonia sp. AG-F from other anastomosis groups including R. solani AG-4, AG-3 as well as AG-2-2 by PCR-RFLP analysis using two restriction endonucleases Tru9I and Bstf5I was successful (Fig. 3) and showed a different pattern from that of the others, in which was supported by other researchers (Cubeta et al., 1991; El-Bakali and Martin Esteban, 2000; Falahati-Rastegar et al., 2010; Mahmoudi et al., 2005; Tajik-Ghanbari et al., 2005) who used this technique to identify different anastomosis groups of Rhizoctonia species. Sequencing analysis of rDNA-ITS showed high similarity to reference data of anastomosis group F in Genbank. None of the tested isolates in our study could produce the teleomorphic stage under cold condition but further research in this issue is necessary. Pathogenicity test revealed that the isolates of AG-F cause stem and root rot only on six months old pistachio seedlings with severe damage on roots but not on one year-old seedlings. The evidence suggested that much attention should be paid during this stage in propagation of seedlings in nursery. In vitro pathogenicity tests on different crops revealed that the binucleate Rhizoctonia sp. AG-F could have a high potential to cause disease on many crops such as watermelon. This finding is supported by other researchers (Nischwitz et al., 2013; Sharon et al., 2007). Due to reports on pathogenicity of binucleate Rhizoctonia sp. AG-F on other hosts including watermelon, cucumber, soybean, sweet potato, pea and strawberry (Nischwitz et al., 2013; Sharon et al., 2007) also with regard to the optimum growth of pathogen at 35 °C and its disease severity, it is a potentially important pathogen in Southern Iran where different susceptible crops including onion, lettuce, tomato and cotton are grown in nursery and field condition and would require greater attention to provide better disease control strategy.

Figure 5: Phylogenetic tree of representative isolates of Rhizoctonia spp. AG-F, inferred by Maximum Likelihood analysis of ITS1, 5.8s and ITS2 sequences in MEGA 7.0. The bootstrap support from 1000 replication is indicated on the branches.
Acknowledgments

The authors wish to thank N. Kondo (Faculty of Agriculture, Hokkaido University Japan) and Parisa Taheri (Faculty of Agriculture, Mashhad University, Iran) who supplied tester strain of Rhizoctonia spp.

References

Fang, X., Finnegan, P. M. and Barbetti, M. J. 2013. Wide variation in virulence and genetic
diversity of binucleate *Rhizoctonia* isolates associated with root rot of strawberry in Western Australia. PloS one, 8: e55877.

Perez Vicente, L., Martínez, E. and González García, M. 2008. Root necrosis and corm rot by Ceratobasidium sp.

گروه آناتوموزی جدید ریزکوتونیایی دووهستهای AG-F عامل پوسیدگی ریشه و ساقه پسته

حسین علی‌اکبر ملایی، سیدابراهیم محمودی و روح‌الله صادقی

1- گروه گیاه‌پزشکی، دانشکده کشاورزی، دانشگاه ولی عصر (عج) رفسنجان، رفسنجان، ایران.
2- مؤسسه تحقیقات اصلاح و تهیه بذر جنگل‌پر، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران.

* پست الکترونیکی نویسنده مسئول مکاتبه:
hossein.alaei@vru.ac.ir

دریافت: ۱۳ بهمن ۱۳۹۴؛ پذیرش: ۱۵ آذر ۱۳۹۵

چکیده: تعداد ده جدایی از قارچ‌های شبیه به Rhizoctonia sp. از ریشه و ساقه‌های آلوه پسته (Pistacia vera) با علامت زردی و نکروز از خزانه‌های تجاری شهرستان رفسنجان، ایران، در پاییز ۱۳۹۰ جداسازی شد. گیاه‌های گره‌های آلوه علامت زردی و نکروز داشتند. براساس خصوصیات هفی و تعداد هسته، تمام ریزکوتونیایی‌های شناسایی شدند. جدایی‌های نمایندگی برای تشخیص گروه آناتوموزی و سایر امکانات ویژه‌ای‌ها در شرایط ITS-rDNA آناتوموزی، مدت بهینه رشد و وجود نواحی گیاهان و آزمایشگاهی مورد بررسی قرار گرفتند. بررسی پوسته‌های یک گیاه‌های نشان داد که خصوصیات گیاه‌ها بین دو گروه آناتوموزی F، باعث اینیتی اولین گزارش جدی آناتوموزی F از ریزکوتونیایی دووهستهای AG-F و S، عامل پوسیدگی ریشه و ساقه پسته در ایران و جهان است.

واژگان کلیدی: نهال پسته، Rhizoctonia sp., واکنش زنجیره‌ای پلیمراسی، استخراج DNA, AG-F.