The \textit{rbcL} Gene Sequence Variations among and within \textit{Prunus} Species

S. Sarhan1, F. Hamed2, and W. Al-Youssef 3

ABSTRACT

The objective of this study was to detect the level of SNP variations of \textit{rbcL} gene sequences among and within \textit{Prunus} species including 17 locally cultivated and wild relatives of \textit{Prunus}, and two species of the subfamily Maloideae (\textit{Malus domestica} and \textit{Pyrus communis}), as out groups. The \textit{rbcL} sequences were amplified, sequenced, and aligned to determine Single Nucleotide Polymorphisms (SNPs). The \textit{rbcL} gene tree of the samples showed two main clusters. The first included the outgroup taxa (\textit{M. domestica} and \textit{P. communis}); and all \textit{Prunus} samples in the second cluster including \textit{Prunus armeniaca}, which separated in a subcluster. Our results indicate that \textit{rbcL} gene sequence analysis provides a well-defined tool to study relationships within and among \textit{Prunus} species, and can be successfully used in constructing reliable phylogenetic tree for \textit{Prunus} accessions.

Keywords: Genetic relationship, \textit{Prunus}, \textit{rbcL}, Sequencing.

INTRODUCTION

The \textit{Rosaceae} family contains about 100 genera and 3,000 species (Judd \textit{et al.}, 1999), \textit{Prunus} is the largest genus in the subfamily Prunoideae (Amygdaloideae) including about 250 species (Lee and Wen, 2001), Peach (\textit{Prunus persica} L.; syn. \textit{P. amygdalus} Batsch) are two commercially grown species that belong to the \textit{Prunus} genus (Rehder, 1940). The two species have originated in Southeast and Central Asia, respectively (Watkins, 1979), while the wild relatives of \textit{Prunus} were found growing from eastern China to the Mediterranean Sea (Browicz and Zohary, 1996). According to Rehder (1940), genus \textit{Prunus} is divided into sub-genera of Prunophora (\textit{Prunus}), Amygdalus, Padus, Cerasus and Laurocerasus. Other authors consider them as a separate genus (McVaugh, 1951). The classification of \textit{Prunus} species is complicated, since closely related taxa often differ by only a single morphological character (Shi \textit{et al.}, 2013). In addition, typical identification requires reproductively mature material that may be available for only a short period of the year (Julian \textit{et al.}, 2009).

Therefore, molecular markers became necessity to study phylogenetic relations of \textit{Prunus} genus. The Single Nucleotide Polymorphism (SNP) and small Insertion and Deletion (InDels), are the most forms of genetic variations in natural populations. They reflect the results of evolution and adaptation (Yamanaka \textit{et al.}, 2004; Wright \textit{et al.}, 2005). They are frequently used in modern genetics for reverse genetics, linkage analysis, genome-wide association study, genotyping and markers assisted selection. In addition, SNP markers were developed to identify plant diseases resistance (Bakooie \textit{et al.}, 2015).
Several investigations were carried out to assess genetic variation and phylogenetic relationship among and within Prunus species using isozyme, RFLPs, RAPDs, SSRs and AFLP (Martínez-Gómez et al., 2003; Mowrey and Werner, 1990). The use of SNPs for genetic fingerprinting, parentage verification, and gene mapping was recommended to be applied in the study of genetic diversity of sweet cherry (Prunus avium) and was also proved to be useful in other related species within Amygdaloideae (Marti et al., 2012). At present, techniques for studying the molecular phylogeny and taxonomy of plants rely heavily on chloroplast genome sequence data. This is because the chloroplast genome is haploid with simple and stable genetic structure, where no or very rare recombination take place, and universal primers can be used to amplify target sequences. In addition, the ease of PCR amplification and sequencing of chloroplast genes using universal primers facilitates phylogeny projects. The chloroplast DNA restriction sites were used to construct the phylogeny of eight cultivated members of Prunus (Badenes and Parfitt, 1995). On the other hand, sequences of chloroplast regions of rbcL, matK, trnL/F, 18S rDNA, and ITS have been used in studies of Rosaceae and Prunus phylogeny (Morgan et al., 1994; Potter et al., 2001, 2003, 2007; Bortiri et al., 2001, 2006). Some of these regions were also shown to be informative within subfamilies such as Amygdaleae (Lee and Wen, 2001; Potter et al., 2002), and Maloideae (Potter et al., 2007).

The Ribulose-Bisphosphate Carboxylase/Oxygenase (RuBisCO) is the enzyme that facilitates the primary CO2 fixation step in the Calvin cycle. The quaternary structure of the enzyme consists of 8 large and 8 small subunits. Sequences of the rbcL large subunit have been used to elucidate higher taxonomic relationships in the angiosperms (Olmstead et al., 1992; Chase et al., 1993; Qiu et al., 1993). The large size (more than 1,400 bp) of rbcL provides many characters that can be utilized in phylogenetic analysis. Additionally, the availability of conserved primers allow for rapid amplification and sequencing. The slow synonymous nucleotide substitution rate in chloroplast DNA (cpDNA) compared to nuclear genes, is another reason for the utility of rbcL in angiosperm phylogeny studies.

The first suggestions that rbcL gene sequence was appropriate in phylogenetic studies were from Ritland and Clegg (1987) and Zurawski and Clegg (1987), and small scale phylogenetic studies based on rbcL sequences were followed (Doebley, 1990; Kim et al., 1992). However, the first collaborative large-scale phylogenetic analysis using rbcL sequence data for a broad sampling of seed plants was conducted by Chase et al., (1993). The rbcL gene was also widely used in phylogeny studies of Prunus species (Morgan et al., 1994; Potter et al., 2007; Quan and Zhou, 2011), and was found to be useful for identifying variations among and within the genera and species.

The purpose of this study was to detect the level of rbcL sequence variations among Prunus species and to produce a phylogeny of genetic tree relationships among Prunus species based on rbcL gene sequence.

MATERIALS AND METHODS

Plant Material

Plant samples investigated in this study (Table 1) were provided by Cergaya and Hott Agricultural Stations which belong to the General Commission for Scientific Agricultural Researches in Syria. The samples comprised five local varieties of almond (Prunus dulcis), seven varieties of peach (Prunus persica), two genotypes of the wild relatives of Prunus orientalis, Prunus korshinskyi, Hybrid GF-677 (Prunus dulcis♂×Prunus persica♀), one local sample of Prunus armeniaca, which belongs to the subgenus Amygdalus, one variety of each of Malus domestica and Pyrus...
Table 1. Investigated Prunus species and varieties and out group samples and their codes in this study.

<table>
<thead>
<tr>
<th>Species</th>
<th>Varieties name</th>
<th>Origin</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Almonds</td>
<td>Shami Furk</td>
<td>Local</td>
<td>P.d_sh</td>
</tr>
<tr>
<td>Prunus dulcis</td>
<td>Hama34</td>
<td>Local</td>
<td>P.d_34</td>
</tr>
<tr>
<td></td>
<td>Hama47</td>
<td>Local</td>
<td>P.d_47</td>
</tr>
<tr>
<td></td>
<td>Babnis</td>
<td>Local</td>
<td>P.d_bb</td>
</tr>
<tr>
<td></td>
<td>Oja</td>
<td>Local</td>
<td>P.d_oja</td>
</tr>
<tr>
<td>P. persica (L.) Batsch</td>
<td>Gioia</td>
<td>Italy</td>
<td>P.p_gi</td>
</tr>
<tr>
<td>Peach and Nectarine</td>
<td>Venus</td>
<td>Italy</td>
<td>P.p_ve</td>
</tr>
<tr>
<td></td>
<td>Caldesi2000</td>
<td>Italy</td>
<td>P.p_ca</td>
</tr>
<tr>
<td></td>
<td>Nectaross</td>
<td>Italy</td>
<td>P.p_ne</td>
</tr>
<tr>
<td></td>
<td>Laure</td>
<td>Italy</td>
<td>P.p_la</td>
</tr>
<tr>
<td></td>
<td>May Crest</td>
<td>Italy</td>
<td>P.p_ma</td>
</tr>
<tr>
<td></td>
<td>Pontina</td>
<td>Italy</td>
<td>P.p_po</td>
</tr>
<tr>
<td>Prunus armeniaca. L</td>
<td>Klabe</td>
<td>Local</td>
<td>P.a_kl</td>
</tr>
<tr>
<td>Prunus korshinskyi</td>
<td>(Rootstock)</td>
<td>local</td>
<td>P.kor</td>
</tr>
<tr>
<td>Prunus orientals. Mill</td>
<td>(Rootstock)</td>
<td>Local</td>
<td>P.ori1</td>
</tr>
<tr>
<td>Prunus orientals</td>
<td>(Rootstock)</td>
<td>Local</td>
<td>P.ori2</td>
</tr>
<tr>
<td>Hybrid GF-677</td>
<td>(Rootstock)</td>
<td>Italy</td>
<td>GF-677</td>
</tr>
<tr>
<td>Malus domestica</td>
<td>Starking</td>
<td></td>
<td>M.d_st</td>
</tr>
<tr>
<td>Pyrus communis</td>
<td>Koshi</td>
<td></td>
<td>P.c_ko</td>
</tr>
</tbody>
</table>

communis (from the sub-family Maloideae) as out groups.

DNA Extraction, PCR Amplification, Electrophoresis and Sequencing

Young half folded leaves were used for total genomic DNA extraction based on the modified CTAB method (Doyle and Doyle, 1987). Primer pair used in PCR amplification were described by (Shokralla et al., 2010) to amplify about 0.6 Kbp of rbcL gene were as follow:

rbcLaF:
5’ATGTCACCACAACAGAGACTAAAGC3’

rbcLaR:
5’GTAAAATCAAGTACCACCRG’3’.

A total volume of 15 µL of PCR reaction mixture contained the following: 0.15 µL of 5 U µL⁻¹ Hot start Taq DNA Polymerase (Takara-bio, Japan), 0.25 µL of 10 mM dNTPs and 0.5 µL of 50 mM MgCl₂, 0.5 µL of each primer (10 pmol) (Vienna Biotech, Austria), 1.5 µL of 10X PCR buffer, 5 µL of 1 ng µL⁻¹ DNA sample, and sterile distilled water to adjust to final volume. PCR amplification was performed with a 96 well Veriti thermal cycler (Applied Biosystems, USA) as follows: 95°C for 5 minutes, followed by 40 cycles of 95°C for 1 minute, 60°C for 1 minute and 72°C for 1 minute, and a last elongation step at 72°C for 10 minutes. One microliter of each of the amplified PCR products was tested on 1.5% agarose gel stained with Ethidium Bromide, and visualized under UV for detecting the amplification efficiency.

PCR products were purified with the QIAquick PCR Purification Kit (Qiagen, Germany) and sequenced using the same primers by ABI Prism Big Dye Terminator Cycle Sequencing Ready Reaction Kit (Applied Biosystems, USA).

Data Analysis

The obtained sequences were subjected to BLASTn analysis by NCBI server (http://blast.ncbi.nlm.nih.gov/Blast.cgi) to detect homology of the target gene and species. Editing and assembling of
sequences were conducted using BioEdit Sequence Alignment editor (Hall, 1999). Phylogenetic and molecular evolutionary analyses were investigated using MEGA version 5 (Tamura et al., 2011). Bootstrap analyses were used to assess the robustness of the tree with 1,000 replicates (Felsenstein, 1985).

RESULTS

The primers were used on the DNAs of 19 samples, which showed complete amplifications with a clear band 600 bp which matched the amplified amplicon size, in all samples (Figure 1).

To confirm results and identify the SNPs, sequencing of \(rbcL \) was conducted in all samples. The SNPs found in our work were both transversion, the substitution of a (two ring) purine for a (one ring) pyrimidine (A/T) and (T/G), and transition, a point mutation that changes a purine nucleotide to another purine (A \(\leftrightarrow \) G). Among \(P. \) armeniaca and all other samples there was one transition (A/G), whereas \(P. \) dulcis samples showed a transversion SNP (A/T).

Figure 1. An example for PCR amplification using primer pair of \(rbcL \) F and \(rbcL \) R. (M) Molecular weight markers; (a) Samples from \(P. \) dulcis and \(P. \) persica, and (b): \(Prunus \) sp. and out group samples.
compared with the rest of the samples, and another clear transversion (T/G) appeared between all *Prunus* sp. and outgroup samples (Figure 2).

The computed nucleotide pair frequencies among all samples showed the presence of three SNPs two transversions and one transition. This data analysis also showed the highest nucleotide changes in *P. armeniaca* when compared to the rest of *Prunus* input sequences. However, the analysis showed no nucleotide substitution within each of *P. persica* and *P. dulcis* (Table 2).

The average of the pairwise distance was 0.002, pairwise distance values within each of the group of *P. Persica* and the group of *P. dulcis* and the wild relatives including hybrid GF-677 was zero, whereas the value 0.002 was between *P. persica* and all other samples of *P. dulcis* and wild relatives, including hybrid GF-677. The pairwise distance between *P. armeniaca* and *P. persica* samples was 0.005. The

![Figure 2](https://example.com/figure2.png)

Figure 2. Partial samples of multiple sequence alignment of *rbcL* gene sequences of the samples sequenced (SNPs are indicated).

<table>
<thead>
<tr>
<th>Samples</th>
<th>II</th>
<th>SI</th>
<th>SV</th>
<th>R</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Within all samples</td>
<td>8.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.61</td>
<td>10.00</td>
</tr>
<tr>
<td>P. armeniaca and the rest of Prunus sp.</td>
<td>3.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.36</td>
<td>4.00</td>
</tr>
<tr>
<td>Wild relatives and P. persica</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Wild relatives and P. dulcis</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>nc</td>
<td>0.00</td>
</tr>
<tr>
<td>Hybrid GF-677 and P. dulcis</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>nc</td>
<td>0.00</td>
</tr>
<tr>
<td>Hybrid GF-677 and P. persica</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Within P. persica</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>nc</td>
<td>0.00</td>
</tr>
<tr>
<td>Within P. dulcis</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>nc</td>
<td>0.00</td>
</tr>
<tr>
<td>Within wild relatives</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>nc</td>
<td>0.00</td>
</tr>
<tr>
<td>P. dulcis and P. persica</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

II = Identical DNA nucleotide pairs; *SI* = Transitional Pairs; *SV* = Transversional Pairs, *R* = SI/SV. All frequencies are averages (rounded) over all samples. Analysis conducted in MEGA5 (Tamura *et al.*, 2011).
corresponding value between *P. armeniaca* and all samples of *P. dulcis*, and wild relatives, including the hybrid GF-677, was 0.007. The highest value of 0.017 was recorded between *Malus domestica* and the samples of *P. dulcis*, and wild relatives, including the hybrid GF-677 (Table 3).

The aligned sequences were used to build a phylogenetic tree using the UPGMA method (Figure 3). Results indicated the presence of two main clusters. The smaller cluster contained plant species *Malus domestica* and *Pyrus communis*, species of subfamily *Pomoideae*, the other samples of *Prunus* genus (subfamily *Prunoideae*) were joined in the bigger cluster. The second main cluster was divided into two further subclusters of *P. armeniaca* (subgenus *Prunus*) alone, and all other samples of *P. persica*, *P. dulcis*. Wild relatives (subgenus *Amygdalus*) including Hybrid GF-677 joined together in another sub cluster at a high bootstrap value of 95. The subcluster of subgenus *Amygdalus*, was divided into two branches, the first one contained all *P. dulcis* samples and wild relatives with hybrid GF-677, the second clad contained *P. persica* samples (Figure 3).

DISCUSSION

Our study took the advantage of using *rbcL* gene, taking into consideration that the coding *rbcL* gene is easily amplified and sequenced in most land plants and has an impact in phylogeny investigations by providing a reliable placement of a taxon into a plant family and genus (Kress and Erickson, 2007; Gyulai et al., 2012).

Sequences of *rbcL* marker showed several genetic differences among samples. The interspecific genetic diversity was lower than the intraspecific one, that was in contrary with Mattia et al. (2011) in their previous research on *Lamiaceae* member. Two SNPs in the *rbcL* region were detected between the three commercial oregano and the other analyzed samples. Whereas, the sequencing of the chloroplast gene *rbcL* of
Eryngium spp. showed the presence of three SNPs between studied species (Jawdat *et al.*, 2013). This result agrees, to some extent, with our results in the ability of *rbcL* to differentiate between species.

The results of UPGMA cluster analysis were close and agree with some other studies (Morgan *et al.*, 1994; Shaw and Small, 2004; Potter *et al.*, 2002, 2003, 2007; Lee and Wen, 2001) and showed that all samples gathered into groups which matched their taxonomic classification. This reflects the ability of *rbcL* gene to provide high discrimination of taxa at the level of subfamilies, genera, and species.

In our study, *rbcL* sequence variations were high between the outgroup *Malus domestica* and *Pyrus communis* (sub family *Pomoideae*) when compared with other taxa of *Prunus* (subfamily of *Prunoideae*), where the average pairwise distance was 0.002. The sample of *P. armeniaca* (sub genus *Prunus*) has been considerably differentiated by having four variation sites (Table 2) when compared with all samples of *Prunus* and with wild relatives (subgenus *Amygdalus*). Our results support Watkins (1979), Potter *et al.* (2003) and Mallikarjuna *et al.* (2004) studies.

Two groups of taxa including the wild relatives within subgenus *Amygdalus* formed two separate subclusters, the first one contained *P. dulcis* samples, the wild relatives and the hybrid GF-677. The second sub cluster contained only *Prunus persica* samples. Similar diversification was presented in the result of authors sharing some samples with our study (*P. dulcis*, *P. armeniaca*, *P. persica* and some other hybrids) using *matk* and SSRs, and by using CAPS (Cleavage Amplified Polymorphic Sequence) (Bouhadida *et al.*, 2007).

The complete matching between the wild relatives *P. korshenskyi* and *P. orientalis* and the *P. dulcis* samples (domesticated almond), with the average of pairwise distance of 0.00, may be due to that *Prunus* wild relatives have been used for a long time as a source of genetic pool in almond breeding programs. However, *rbcL* sequence variations between *Prunus dulcis* samples and their wild relatives were not informative.
for their identification. Also, this result supports the results of Bortiri et al. (2001) and Shaw and Small (2004) in grouping Prunus dulcis samples with P. korshinskii and P. orientalis.

The GF-677 rootstock is a vegetatively propagated hybrid between the Spanish almonds ‘Garfi’ [P. dulcis (Mill.) D. A., Webb] as the female parent and the North American peach ‘Nemared’ [P. persica (L.) Batsch] as the pollen donor. This hybrid has joined the group of P. dulcis and wild relatives in one major sub-cluster. This can be supported by the fact that rbcL gene is maternally inherited. Furthermore, a partial sequence may lead to a high match percentage that may not reflect an accurate identification of the query sequence (Schori and Showalter, 2011).

Reliable identification of variation below species level would provide valuable insight into subspecies ranges, and habitat differentiation, additionally, it would help in defining the important variation within species. (Kane et al., 2012).

Peach samples included in this study were vegetatively propagated. Therefore, it is not expected to obtain high variation level in a single gene locus such as rbcL. In addition, the fact is that rbcL gene is maternally inherited which makes it highly conserved within cultivars belonging to the same species and sharing the same origin of maternally chloroplast genome. The reason along the low evolutionary rate of this chloroplast gene suggests that cultivars from both species (P. persica and P. dulcis) included in this study seem to be one taxa in each group.

Finally, a good level of discrimination based on rbcL marker was observed between studied species and less or absence of variation within species. The analysis of genetic variations among groups of Prunus samples and wild relatives using rbcL gene allowed us to cluster successfully all samples supporting their morphological characteristics, and their botanical classification. Although rbcL gene sequence was not able to identify cultivars, which belonged to the same species, it is effectively variable at species level and much more detailed work is needed on the complete gene sequence. In addition, using other chloroplast genes such as matK or PCR based markers like microsatellites should also be investigated to further clarify genetic diversity of Prunus.

REFERENCES

تغییرات توالی زن rbcL در درون و در بین گونه‌های هلوسا Prunus

س. سرهمان، ف. حامد، و. الیسوف

چکیده

هدف این پژوهش بررسی سطح تغییرات SNP توالی زن rbcL در درون و در بین گونه‌های هلوسا Prunus می‌باشد. 17 گونه کشت شده محلی و خویشاوندان وحشی هلوسا آغوش ورودی به عنوان گروه پرتره Prunus Maloideae (Malus domestica and Pyrus communis) را در نظر گرفته و در این پژوهش، توالی های rbcL تکثیر و توالی پدیدار می‌شود. نتیج درخت اندازه‌گیری (SNP) است. مراجعه کننده های تغییرات در منظور پیگیری تغییرات در منظور پیگیری این گونه می‌باشد. نتیج درخت اندازه‌گیری (SNP) است. مراجعه کننده های تغییرات در منظور پیگیری این گونه می‌باشد. نتیج درخت اندازه‌گیری (SNP) است. مراجعه کننده های تغییرات در منظور پیگیری این گونه می‌باشد. نتیج درخت اندازه‌گیری (SNP) است. مراجعه کننده های تغییرات در منظور پیگیری این گونه می‌باشد. نتیج درخت اندازه‌گیری (SNP) است. مراجعه کننده های تغییرات در منظور پیگیری این گونه می‌باشد. نتیج درخت اندازه‌گیری (SNP) است. مراجعه کننده های تغییرات در منظور پیگیری این گونه می‌باشد. نتیج درخت اندازه‌گیری (SNP) است. مراجعه کننده های تغییرات در منظور پیگیری این گونه می‌باشد. نتیج درخت اندازه‌گیری (SNP) است. مراجعه کننده های تغییرات در منظور پیگیری این گونه می‌باشد. نتیج درخت اندازه‌گیری (SNP) است. مراجعه کننده H...